论文部分内容阅读
传统的行人航位推算(PDR)算法用于井下人员定位时,因步频检测、步长估计和航向估计阶段的姿态累计误差导致定位误差逐渐增大,而常用的零速校正、航向漂移消除、步态信号优化等误差修正方法无法改变PDR算法的固有缺陷,定位精度有待提高。提出采用改进的峰值检测法实现PDR算法中步频检测,基于深度循环神经网络(RNN)实现步长估计。将改进的PDR算法用于井下人员定位:首先采用手机加速度传感器、陀螺仪、磁力计获取行人运动数据;然后采用改进的峰值检测法获取固定时间间隔内的平均步频,与时间间隔、加速度及加速度方差作为特征输