论文部分内容阅读
开放题是数学教学中的一种新题型,它是相对于传统的封闭题而言的。开放题的核心是培养学生的创造意识和创造能力,激发学生独立思考和创新的意识,这是一种新的教育理念的具体体现。现行数学教材中,习题基本上是为了使学生了解和牢记数学结论而设计的,学生在学习中缺乏主动参与的过程。那么在教材还没有提供足够的开放题之前,好的開放题从那里来?我认为最现实的办法是让“封闭”题“开放”。
一、开放意识的形成
关于开放题目前尚无确切的定论,通常是改变命题结构,改变设问方式,增强问题的探索性以及解决问题过程中的多角度思考,对命题赋予新的解释进而形成和发现新的问题。近两年高考题中也出现了开放题的“影子”,如1,=>x≥0,以后的道路一片光明;结论开放体现在结论分为两段,一段上可使函数单调,另一段上不单调,且证明不单调的方法是寻找反例)。
从数学考试中引进一定的结合现实背景的问题和开放性问题,已引起了广大数学教育工作者的极大关注,开放题的研究已成为数学教育的一个热点。
二、开放问题的构建
有了开放的意识,加上方法指导,开放才会成为可能。开放问题的构建主要从两个方面进行,其一是问题本身的开放而获得新问题,其二是问题解法的开放而获得新思路。根据创造的三要素:“结构、关系、顺序”,我们可以为学生构建由“封闭”题“开放”的如下框图模式:
〔例1〕用实际例子说明y=10+2x,x∈[0,5]20,x∈[5,10]40-2x,x∈[10,20]所表示的意义
给变量赋予不同的内涵,就可得出函数不同的解释,我们从物理和经济两个角度出发给出实例。
1.X表示时间(单位:s),y表示速度(单位:m/s),开始计时后质点以10/s的初速度作匀加速运动,加速度为2m/s2,5秒钟后质点以20/s的速度作匀速运动,10秒钟后质点以-2m/s2的加速度作匀减速运动,直到质点运动到20秒末停下。
2.季节性服饰在当季即将到来之时,价格呈上升趋势,设某服饰开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售,10周后当季即将过去,平均每周削价2元,直到20周末该服饰不再销售。
函数概念的形成,一般是从具体的实例开始的,但在学习函数时,往往较少考虑实际意义,本题旨在通过学生根据自己的知识经验给出函数的实际解释,体会到数学概念的一般性和背景的多样性。这是对问题理解上的开放。
〔例2〕由圆x2+y2=4上任意一点向x轴作垂线。求垂线夹在圆周和x轴间的线段中点的轨迹方程。(答案:x2/4+y2=1)
问题本身开放:先从问题中分解出一些主要“组件”,如:A、“圆x2+y2=4”;B、“x轴”;C、“线段中点”等。然后对这些“组件”作特殊化、一般化等处理便可获得新问题。
对A而言,圆作为一种特殊的曲线,我们将其重新定位在“曲线”上,那么曲线又可分解成大小、形状和位置三要素,于是改变条件A(大小或形状或位置)就可使问题向三个方向延伸。
如改变位置,将A写成“(x-a)2+(y-b)2=4”,即可得所求的轨迹方程为(x-a)2+(2y-b)2=4;再将其特殊化(取a=0),并进行新的组合便有问题:圆x2+(y-b)2=4与椭圆x2+(2y-b)2=4有怎样的位置关系?试说明理由。
当y=0时,x2+b2=4,
(1)若b<-2或 b>2,圆与椭圆没有公共点;
(2)若b=±2,圆与椭圆恰有一个公共点;
(3)若 -2 当y=2b/3时,x2+b2/9=4,
(1)若b<-6或b>6,圆与椭圆没有公共点;
(2)若b=±6,圆与椭圆恰有一个公共点;
(3)若-6 综上所述,圆x2+(y-b)2=4与椭圆x2+(2y-b)2=4,当b<-6或b>6时没有公共点;当b=±6时恰有一个公共点;当-6 上面的解法是从“数”着手,也可以从“形”着手分析。
再进一步延伸,得:当b>6时,圆x2+(y-b)2=4上的点到椭圆x2+(2y-b)2=4上的点的最大距离是多少?这个问题的解决是对数形结合、等价转化等思想的进一步强化。
对B而言,它是一条特殊的直线,通过对其位置的变更可产生许多有意义的问题;而C是一种特殊的线段分点,同样可以使其推广到一般,若对由此产生的结果继续研究就会发现以往的一些会考、高考试题。
开放的行为给上面简单的问题注入了新的活力,推陈出“新”、自己给自己出题是人自我意识的回归。开放的过程说白了就是探索的过程。随着高考命题改革的进一步深入,我想这样的“开放”会在高考中更显示其生命力。
参考文献:
[1]《高中数学教学大纲》 2007版人民教育出版社
[2]《数学教育学概论》 曹才翰等 1998 .5江苏教育出版社
一、开放意识的形成
关于开放题目前尚无确切的定论,通常是改变命题结构,改变设问方式,增强问题的探索性以及解决问题过程中的多角度思考,对命题赋予新的解释进而形成和发现新的问题。近两年高考题中也出现了开放题的“影子”,如1,=>x≥0,以后的道路一片光明;结论开放体现在结论分为两段,一段上可使函数单调,另一段上不单调,且证明不单调的方法是寻找反例)。
从数学考试中引进一定的结合现实背景的问题和开放性问题,已引起了广大数学教育工作者的极大关注,开放题的研究已成为数学教育的一个热点。
二、开放问题的构建
有了开放的意识,加上方法指导,开放才会成为可能。开放问题的构建主要从两个方面进行,其一是问题本身的开放而获得新问题,其二是问题解法的开放而获得新思路。根据创造的三要素:“结构、关系、顺序”,我们可以为学生构建由“封闭”题“开放”的如下框图模式:
〔例1〕用实际例子说明y=10+2x,x∈[0,5]20,x∈[5,10]40-2x,x∈[10,20]所表示的意义
给变量赋予不同的内涵,就可得出函数不同的解释,我们从物理和经济两个角度出发给出实例。
1.X表示时间(单位:s),y表示速度(单位:m/s),开始计时后质点以10/s的初速度作匀加速运动,加速度为2m/s2,5秒钟后质点以20/s的速度作匀速运动,10秒钟后质点以-2m/s2的加速度作匀减速运动,直到质点运动到20秒末停下。
2.季节性服饰在当季即将到来之时,价格呈上升趋势,设某服饰开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售,10周后当季即将过去,平均每周削价2元,直到20周末该服饰不再销售。
函数概念的形成,一般是从具体的实例开始的,但在学习函数时,往往较少考虑实际意义,本题旨在通过学生根据自己的知识经验给出函数的实际解释,体会到数学概念的一般性和背景的多样性。这是对问题理解上的开放。
〔例2〕由圆x2+y2=4上任意一点向x轴作垂线。求垂线夹在圆周和x轴间的线段中点的轨迹方程。(答案:x2/4+y2=1)
问题本身开放:先从问题中分解出一些主要“组件”,如:A、“圆x2+y2=4”;B、“x轴”;C、“线段中点”等。然后对这些“组件”作特殊化、一般化等处理便可获得新问题。
对A而言,圆作为一种特殊的曲线,我们将其重新定位在“曲线”上,那么曲线又可分解成大小、形状和位置三要素,于是改变条件A(大小或形状或位置)就可使问题向三个方向延伸。
如改变位置,将A写成“(x-a)2+(y-b)2=4”,即可得所求的轨迹方程为(x-a)2+(2y-b)2=4;再将其特殊化(取a=0),并进行新的组合便有问题:圆x2+(y-b)2=4与椭圆x2+(2y-b)2=4有怎样的位置关系?试说明理由。
当y=0时,x2+b2=4,
(1)若b<-2或 b>2,圆与椭圆没有公共点;
(2)若b=±2,圆与椭圆恰有一个公共点;
(3)若 -2 当y=2b/3时,x2+b2/9=4,
(1)若b<-6或b>6,圆与椭圆没有公共点;
(2)若b=±6,圆与椭圆恰有一个公共点;
(3)若-6 综上所述,圆x2+(y-b)2=4与椭圆x2+(2y-b)2=4,当b<-6或b>6时没有公共点;当b=±6时恰有一个公共点;当-6 上面的解法是从“数”着手,也可以从“形”着手分析。
再进一步延伸,得:当b>6时,圆x2+(y-b)2=4上的点到椭圆x2+(2y-b)2=4上的点的最大距离是多少?这个问题的解决是对数形结合、等价转化等思想的进一步强化。
对B而言,它是一条特殊的直线,通过对其位置的变更可产生许多有意义的问题;而C是一种特殊的线段分点,同样可以使其推广到一般,若对由此产生的结果继续研究就会发现以往的一些会考、高考试题。
开放的行为给上面简单的问题注入了新的活力,推陈出“新”、自己给自己出题是人自我意识的回归。开放的过程说白了就是探索的过程。随着高考命题改革的进一步深入,我想这样的“开放”会在高考中更显示其生命力。
参考文献:
[1]《高中数学教学大纲》 2007版人民教育出版社
[2]《数学教育学概论》 曹才翰等 1998 .5江苏教育出版社