论文部分内容阅读
摘要: 针对抽水蓄能电站水泵水轮机运行过程中出现的振动问题,从产生共振的条件出发,分析了转轮叶片和活动导叶形成的叶栅组合的动静干涉机理。根据转轮对水力激振模式的动态响应,研究了不同叶栅组合方式对水力激振力的影响。建立流固耦合数学模型,对转轮、活动导叶、顶盖及底环等过流部件的动态特性进行了有限元分析,以7/20的叶栅组合为例,阐述了流体激发结构共振的可能性。为了避免过流部件发生共振以及由此产生的疲劳裂纹或断裂等事故,提出了最佳叶栅组合的选择原则、降低无叶区压力脉动的方法以及提高结构固有频率和降低局部应力集中系数的具体措施。关键词: 水泵水轮机; 流固耦合; 动静干涉; 水力激振
中图分类号: TK730.2文献标识码: A文章编号: 10044523(2014)04056507
引言
抽水蓄能水泵水轮机在稳定工况下运行时,转轮叶片和活动导叶间相互作用形成的压力脉动是引起机组振动、噪声主要原因之一。这种动静干涉现象是由转轮转动引起的势流扰动和活动导叶的尾流引起的流场扰动之间调制的结果,由此引起的压力脉动波将会在整个水力机械中传播,容易引起水力激振力与转轮或导水机构部件的水力共振,并造成结构部件的疲劳裂纹或破坏[1]。为了揭示水泵水轮机转轮叶片与活动导叶之间动静干涉的产生机理,Haban探索了一种精确求解非定常势流的方法,研究了活动导叶处于全开位置时动静干涉的压力分布规律[2]。Nicolet等根据无叶区的流场分布,建立了基于静止和转动部件之间阀网格驱动的激励源简化水声模型,得到了共振条件对压力脉动的影响。采用数值模拟研究方法所获得的成果对于水泵水轮机的动静干涉和振动分析具有一定的指导意义,可是没有对叶栅组合引起动静干涉的机理进行分析。
本文针对水泵水轮机动静干涉引起过流部件的结构振动问题,以转轮叶片数为7个、活动导叶数为20个所形成的叶栅组合方式为例,系统阐述了由动静干涉产生的水力激振模式,并对转轮、活动导叶、顶盖及底环的固有频率进行了有限元分析。根据共振条件研究了过流部件产生共振的可能性,从机组选型与结构优化的角度,提出了合理避振的具体措施。
1动静干涉1.1动静干涉的形成水泵水轮机的转轮设计高度较矮,而活动导叶的出水边设计的相对较厚,在机组运行过程中,活动导叶的尾流效应导致在出口处产生很强的不均匀流场,在水压力作用下,随着转轮的旋转,在转轮进口处同样会产生有规律的势流扰动。在转轮与活动导叶之间的无叶区将会产生周期性的动静干涉现象[3]。静止系统和转动系统的图5中给出了A,B,C三种可能状态,它们是:A)只考虑转轮叶片进水边厚度;B)只考虑活动导叶出水边厚度;C)同时考虑转轮叶片进水边和活动导叶出水边厚度。B和C曲线表明,叶片进水边厚度和导叶出水边的厚度相同时,无叶区的压力脉动幅值基本相似,而同时考虑A和B时,无叶区的压力脉动幅值出现了大幅升高,并且厚度越大,无叶区的压力脉动幅值越高。因此,在保证机组水力性能和结构强度的前提下,适当减薄进、出水边的厚度,有利于降低无叶区的压力脉动幅值。
综合上述振动影响因素,通过选择最佳的叶栅组合、调整各部件之间的相对位置关系、改变结构的动态特性以及降低应力集中系数等方法进行转动和静止系统的优化设计,可以有效预防水泵水轮机过流部件动静干涉诱发的水力共振以及由此产生的部件疲劳裂纹或断裂等现象的发生,提高了水泵水轮机的运行稳定性。
4结论
本文根据水泵水轮机过流部件产生共振的条件,研究了转轮叶片数与活动导叶数形成的叶栅组合条件下动静干涉的产生机理,建立了过流部件动态特性分析的数学模型,并对转轮、活动导叶、顶盖及底环的动态特性进行了有限元分析,从避振和防裂纹设计的角度论述了水泵水轮机的优化设计方法。回顾全文,可以得到如下结论。
1)水泵水轮机动静干涉产生的水力激振模式取决于转轮叶片数与活动导叶数形成的叶栅组合方式,叶栅组合方式和机组转速决定了作用于转动和静止部件上的水力激振力频率。
2)采用流固耦合方法计算过流部件的固有频率,更加符合工程实际。在进行振动分析时,必须考虑水力激振力的振型和频率与过流部件相应振动特性的耦合程度。
3)从水泵水轮机的优化设计出发,综合论述了叶栅组合方式的选择、过流部件间的相对位置关系及结构尺寸等因素对水力激振的影响,分析了改变结构的固有频率和降低局部应力集中系数的具体措施,为预防过流部件产生共振问题以及由此产生的疲劳裂纹或断裂等事故创造了有利条件。
参考文献:
[1]庞立军,吕桂萍,刘晶石,等.高水头水泵水轮机转轮的抗振防裂纹设计[J].机械工程学报,2013,49(4):140—147.
Pang Lijun,Lv Guiping, Liu Jingshi, et al. Antivibration and crack control design of highhead pumpturbine runner[J]. Journal of Mechenical Engineering,2013,49(4):140—147.
[2]Haban V, Koutnik J, Pochyly F. 1D mathematical model of highfrequency Pressure oscillations induced induced by RSI including an influence of fluid second viscosity[A]. Proc 21st IAHR Symp.[C]. Switzerland, 2002:735—740.
[3]Wuibaut G, Bois G, Caignaert G, et al. Experimental analysis of interactions between the impeller and the vaned diffuser of a radial flow pump[A]. International Association on Hydraulic Research 2002 Symposium[C]. Switzerland, 2002:1—11. [4]Nicolet C, Ruchonnet N. Avellan F. Onedimensional modeling of rotor stator interaction in Francis pumpturbine[A]. 23st IAHR Symp.[C]. 2006:1—15.
[5]Pavesi G, Ardizzon G. Analysis of unsteady impeller diffuser interaction in a centrifugal pump[A]. 22nd IAHR Symposium on Hydraulic Machinery and Systems[C]. Sweden, 2004,B5114.
[6]Liu Shuhong, Shao Jie,Wu Shangfeng, et al. Numerical simulation of pressure fluctuation in kaplan turbine [J]. Science in China Series E: Technological Sciences, 2008, 51(8): 1 137—1 148.
[7]庞立军, 吕桂萍, 钟苏,等. 水轮机固定导叶的涡街模拟与振动分析[J]. 机械工程学报, 2011,47(22):159—165.
Pang Lijun, Lv Guiping, Zhong Su, et al. Vortex shedding simulation and vibration analysis of stay vanes of hydraulic turbin [J]. Journal of Mechanical Engineering, 2011, 47(22): 159—165.
[8]陶红丹, 盛美萍, 肖和业. 声激励下双层结构声和振动特性研究[J]. 振动工程学报, 2010, 23(1): 107—112.
Tao Hongdan, Sheng Meiping, Xiao Heye. Vibroacoustic characteristics through doubleplate structures with mechanical links [J]. Journal of Vibration Engineering, 2010, 21(1): 107—112.
[9]邢景棠, 周盛, 崔尔杰. 流固耦合力学概述[J]. 力学进展, 1997, 27(1): 19—39.
Xing Jingtang, Zhou Sheng, Cui Erjie. Asurvey on the fluidsolid interaction mechanics [J]. Advances in Mechanics, 1997, 27(1): 19—39.
[10]Grosse G, Seidel U, Rieg M. Vibration diagnosisexperience from applications on pumpturbines and francis turbines[A]. The 1st International Conference on Hydropower Technology & Key Equipment[C]. Beijing, China, 2006:899—911.
[11]钟苏. 关于水轮机抗振与防裂纹设计的建议[J]. 水力发电学报, 2005, 31(2): 54—57.
Zhong Su. Suggestions on the design of the antivibrations and cracproof of turbine [J]. Journal of Hydraulic Power Generation, 2005, 31(2): 54—57.
[12]Nicolet C, Arpe J, Avellan F. Identification and modeling of pressure fluctuations of a francis turbine scale model at part load operation[A]. Proceedings of the 22nd IAHR Symposium on Hydraulic Machinery and Systems[C]. Stockholm, Sweden, 2004,A07117.
[13]黄元芳, 刘光宁, 樊世英. 原型水轮机运行研究[M]. 北京: 中国电力出版社,2010 .
Huang Yuanfang, Liu Guangning, Fan Shiying. Research on Prototype Hydroturbine[M]. Beijing: China Electric Power Press,2010.
[14]张妍, 王怀磊, 杨杰. 斜拉塔索桥耦合连续模型及其内共振分析[J]. 振动工程学报, 2010, 23(4): 397—403.
Zhang Yan, Wang Huailei, Yan Jie. A continuous model of coupled cabletowerdecks and its resonance bibration [J]. Journal of Vibration Engineering, 2010, 23(4): 397—403.
[15]Wang Leqin, Yin Junlian, Jiao Lei, et al. Numerical investigation on the “S” characteristics of a reduced pump turbine mode[J]. Science in China Series E: Technological Sciences, 2011,54(5): 1 259—1 266. Analysis on rotorstator interaction and vibration of pump turbine
in pumped storage power station
JIA Wei1, LIU Jingshi1, PANG Lijun1, L Guiping1, WANG Hongjie2
(1.State Key Laboratory of Hydropower Equipment, Harbin Institute of Large Electrical Machinery,
Harbin 150041, China;
2.Energy Science and Engineering,Harbin Institute of Technology, Harbin 150001, China)
Abstract: Mechanism of production of rotorstator interaction with the cascades match composed of runner blades and wicket gates is analyzed aiming at the problem that there is vibration during operation of pump turbine in pumped storage power station. Influence of different cascades matches on hydraulic excitation force is studied based on dynamic response of runner to hydraulic excitation mode. Finite element analysis on dynamic characteristics of hydraulic turbine components including runner, wicket gate, head cover and bottom ring are carried out by using fluid structure interaction method and corresponding model. The resonance possibility of structure excited by fluid is stated for cascades match 7/20. In order to avoid resonance of hydraulic turbine components and the consequent fatigue crack and fracture accident, selection principles of optimal cascades matches, methods of reducing pressure fluctuation in vaneless space and concrete measures for increasing natural frequencies and reducing factor of stress concentration of structures are proposed. Key words: pump turbine; fluid structure interaction; rotorstator interaction; hydraulic excitation作者简介: 贾伟(1985—),男,工程师。电话: (0451)87937324; Email:jiawei.best@163.com希希
中图分类号: TK730.2文献标识码: A文章编号: 10044523(2014)04056507
引言
抽水蓄能水泵水轮机在稳定工况下运行时,转轮叶片和活动导叶间相互作用形成的压力脉动是引起机组振动、噪声主要原因之一。这种动静干涉现象是由转轮转动引起的势流扰动和活动导叶的尾流引起的流场扰动之间调制的结果,由此引起的压力脉动波将会在整个水力机械中传播,容易引起水力激振力与转轮或导水机构部件的水力共振,并造成结构部件的疲劳裂纹或破坏[1]。为了揭示水泵水轮机转轮叶片与活动导叶之间动静干涉的产生机理,Haban探索了一种精确求解非定常势流的方法,研究了活动导叶处于全开位置时动静干涉的压力分布规律[2]。Nicolet等根据无叶区的流场分布,建立了基于静止和转动部件之间阀网格驱动的激励源简化水声模型,得到了共振条件对压力脉动的影响。采用数值模拟研究方法所获得的成果对于水泵水轮机的动静干涉和振动分析具有一定的指导意义,可是没有对叶栅组合引起动静干涉的机理进行分析。
本文针对水泵水轮机动静干涉引起过流部件的结构振动问题,以转轮叶片数为7个、活动导叶数为20个所形成的叶栅组合方式为例,系统阐述了由动静干涉产生的水力激振模式,并对转轮、活动导叶、顶盖及底环的固有频率进行了有限元分析。根据共振条件研究了过流部件产生共振的可能性,从机组选型与结构优化的角度,提出了合理避振的具体措施。
1动静干涉1.1动静干涉的形成水泵水轮机的转轮设计高度较矮,而活动导叶的出水边设计的相对较厚,在机组运行过程中,活动导叶的尾流效应导致在出口处产生很强的不均匀流场,在水压力作用下,随着转轮的旋转,在转轮进口处同样会产生有规律的势流扰动。在转轮与活动导叶之间的无叶区将会产生周期性的动静干涉现象[3]。静止系统和转动系统的图5中给出了A,B,C三种可能状态,它们是:A)只考虑转轮叶片进水边厚度;B)只考虑活动导叶出水边厚度;C)同时考虑转轮叶片进水边和活动导叶出水边厚度。B和C曲线表明,叶片进水边厚度和导叶出水边的厚度相同时,无叶区的压力脉动幅值基本相似,而同时考虑A和B时,无叶区的压力脉动幅值出现了大幅升高,并且厚度越大,无叶区的压力脉动幅值越高。因此,在保证机组水力性能和结构强度的前提下,适当减薄进、出水边的厚度,有利于降低无叶区的压力脉动幅值。
综合上述振动影响因素,通过选择最佳的叶栅组合、调整各部件之间的相对位置关系、改变结构的动态特性以及降低应力集中系数等方法进行转动和静止系统的优化设计,可以有效预防水泵水轮机过流部件动静干涉诱发的水力共振以及由此产生的部件疲劳裂纹或断裂等现象的发生,提高了水泵水轮机的运行稳定性。
4结论
本文根据水泵水轮机过流部件产生共振的条件,研究了转轮叶片数与活动导叶数形成的叶栅组合条件下动静干涉的产生机理,建立了过流部件动态特性分析的数学模型,并对转轮、活动导叶、顶盖及底环的动态特性进行了有限元分析,从避振和防裂纹设计的角度论述了水泵水轮机的优化设计方法。回顾全文,可以得到如下结论。
1)水泵水轮机动静干涉产生的水力激振模式取决于转轮叶片数与活动导叶数形成的叶栅组合方式,叶栅组合方式和机组转速决定了作用于转动和静止部件上的水力激振力频率。
2)采用流固耦合方法计算过流部件的固有频率,更加符合工程实际。在进行振动分析时,必须考虑水力激振力的振型和频率与过流部件相应振动特性的耦合程度。
3)从水泵水轮机的优化设计出发,综合论述了叶栅组合方式的选择、过流部件间的相对位置关系及结构尺寸等因素对水力激振的影响,分析了改变结构的固有频率和降低局部应力集中系数的具体措施,为预防过流部件产生共振问题以及由此产生的疲劳裂纹或断裂等事故创造了有利条件。
参考文献:
[1]庞立军,吕桂萍,刘晶石,等.高水头水泵水轮机转轮的抗振防裂纹设计[J].机械工程学报,2013,49(4):140—147.
Pang Lijun,Lv Guiping, Liu Jingshi, et al. Antivibration and crack control design of highhead pumpturbine runner[J]. Journal of Mechenical Engineering,2013,49(4):140—147.
[2]Haban V, Koutnik J, Pochyly F. 1D mathematical model of highfrequency Pressure oscillations induced induced by RSI including an influence of fluid second viscosity[A]. Proc 21st IAHR Symp.[C]. Switzerland, 2002:735—740.
[3]Wuibaut G, Bois G, Caignaert G, et al. Experimental analysis of interactions between the impeller and the vaned diffuser of a radial flow pump[A]. International Association on Hydraulic Research 2002 Symposium[C]. Switzerland, 2002:1—11. [4]Nicolet C, Ruchonnet N. Avellan F. Onedimensional modeling of rotor stator interaction in Francis pumpturbine[A]. 23st IAHR Symp.[C]. 2006:1—15.
[5]Pavesi G, Ardizzon G. Analysis of unsteady impeller diffuser interaction in a centrifugal pump[A]. 22nd IAHR Symposium on Hydraulic Machinery and Systems[C]. Sweden, 2004,B5114.
[6]Liu Shuhong, Shao Jie,Wu Shangfeng, et al. Numerical simulation of pressure fluctuation in kaplan turbine [J]. Science in China Series E: Technological Sciences, 2008, 51(8): 1 137—1 148.
[7]庞立军, 吕桂萍, 钟苏,等. 水轮机固定导叶的涡街模拟与振动分析[J]. 机械工程学报, 2011,47(22):159—165.
Pang Lijun, Lv Guiping, Zhong Su, et al. Vortex shedding simulation and vibration analysis of stay vanes of hydraulic turbin [J]. Journal of Mechanical Engineering, 2011, 47(22): 159—165.
[8]陶红丹, 盛美萍, 肖和业. 声激励下双层结构声和振动特性研究[J]. 振动工程学报, 2010, 23(1): 107—112.
Tao Hongdan, Sheng Meiping, Xiao Heye. Vibroacoustic characteristics through doubleplate structures with mechanical links [J]. Journal of Vibration Engineering, 2010, 21(1): 107—112.
[9]邢景棠, 周盛, 崔尔杰. 流固耦合力学概述[J]. 力学进展, 1997, 27(1): 19—39.
Xing Jingtang, Zhou Sheng, Cui Erjie. Asurvey on the fluidsolid interaction mechanics [J]. Advances in Mechanics, 1997, 27(1): 19—39.
[10]Grosse G, Seidel U, Rieg M. Vibration diagnosisexperience from applications on pumpturbines and francis turbines[A]. The 1st International Conference on Hydropower Technology & Key Equipment[C]. Beijing, China, 2006:899—911.
[11]钟苏. 关于水轮机抗振与防裂纹设计的建议[J]. 水力发电学报, 2005, 31(2): 54—57.
Zhong Su. Suggestions on the design of the antivibrations and cracproof of turbine [J]. Journal of Hydraulic Power Generation, 2005, 31(2): 54—57.
[12]Nicolet C, Arpe J, Avellan F. Identification and modeling of pressure fluctuations of a francis turbine scale model at part load operation[A]. Proceedings of the 22nd IAHR Symposium on Hydraulic Machinery and Systems[C]. Stockholm, Sweden, 2004,A07117.
[13]黄元芳, 刘光宁, 樊世英. 原型水轮机运行研究[M]. 北京: 中国电力出版社,2010 .
Huang Yuanfang, Liu Guangning, Fan Shiying. Research on Prototype Hydroturbine[M]. Beijing: China Electric Power Press,2010.
[14]张妍, 王怀磊, 杨杰. 斜拉塔索桥耦合连续模型及其内共振分析[J]. 振动工程学报, 2010, 23(4): 397—403.
Zhang Yan, Wang Huailei, Yan Jie. A continuous model of coupled cabletowerdecks and its resonance bibration [J]. Journal of Vibration Engineering, 2010, 23(4): 397—403.
[15]Wang Leqin, Yin Junlian, Jiao Lei, et al. Numerical investigation on the “S” characteristics of a reduced pump turbine mode[J]. Science in China Series E: Technological Sciences, 2011,54(5): 1 259—1 266. Analysis on rotorstator interaction and vibration of pump turbine
in pumped storage power station
JIA Wei1, LIU Jingshi1, PANG Lijun1, L Guiping1, WANG Hongjie2
(1.State Key Laboratory of Hydropower Equipment, Harbin Institute of Large Electrical Machinery,
Harbin 150041, China;
2.Energy Science and Engineering,Harbin Institute of Technology, Harbin 150001, China)
Abstract: Mechanism of production of rotorstator interaction with the cascades match composed of runner blades and wicket gates is analyzed aiming at the problem that there is vibration during operation of pump turbine in pumped storage power station. Influence of different cascades matches on hydraulic excitation force is studied based on dynamic response of runner to hydraulic excitation mode. Finite element analysis on dynamic characteristics of hydraulic turbine components including runner, wicket gate, head cover and bottom ring are carried out by using fluid structure interaction method and corresponding model. The resonance possibility of structure excited by fluid is stated for cascades match 7/20. In order to avoid resonance of hydraulic turbine components and the consequent fatigue crack and fracture accident, selection principles of optimal cascades matches, methods of reducing pressure fluctuation in vaneless space and concrete measures for increasing natural frequencies and reducing factor of stress concentration of structures are proposed. Key words: pump turbine; fluid structure interaction; rotorstator interaction; hydraulic excitation作者简介: 贾伟(1985—),男,工程师。电话: (0451)87937324; Email:jiawei.best@163.com希希