论文部分内容阅读
【摘 要】创新思维能力的培养, 是当前数学教学的重要任务。首先教师要营造创新思维能力的环境, 引导学生主动参与教学过程, 激发创新的兴趣和探索的欲望。在教学过程中, 开拓思路, 诱导质疑, 挖掘学生的创新潜能。
【关键词】高中数学;思维能力;提高
数学能力是人们在从事数学活动时所必需的各种能力的综合,而其中数学思维能力是数学能力的核心。高度的抽象性是数学最本质的特点,数学的抽象性导致了极大的概括性,抽象和概括构成了数学的实质,数学的思维是抽象概括的思维。因此,抽象概括能力构成了数学思维能力的第一要素。
一、创新意识的培养
首先注重问题的教学,以问促思,以问促变,以问促创新意识的培养。好的问题应充分体现必要性和实用性,能激发认知需求,好的问题能诱导积极探索,促进知识的深化;好的问题往往是新知识的生长点,内在联系的交叉点,更是创新思维的启动点;好的问题能促进学生展开积极的活动,从而获得主动地发现机会。其次重例题的选择及变式,培养学生的创新意识。教师对教学中的例题的设计和选择,要有针对性;要进行一题多解的训练,要引导学生对原理进行广泛的变换和延伸,尽可能延伸出更多相关性、相似性、相反性的新问题,进一步发展学生的创造性思维。最后创设民主氛围,激发主体意识是关键。主体意识是指作为认识和实践活动主体的人对于自身的主体地位、主体能力和主体价值的一种自觉意识,是主体的自主性、能动性和创造性的观念表现。学生主体意识的强弱,在某种意义上决定着其对自己身心发展的自知、自主、自控的程度。主体意识愈强,学生参与自身发展、在学习活动中实现自己的本质力量的自觉性就愈强。高中数学作为一门基础学科,主要是用来传播和再现前人研究。发现所积累的科学成果的,不再具有首创性,加上其自身严谨的逻辑性和抽象的理性,要求高中数学的创造教育必须创设一定情景、氛围,引导、启发学生模拟、探究原科学家的实践活动过程,呼唤学习主体能动参与联想、判断、推理、综合分析、归纳等学习探究活动。因此,教师在教学中发扬民主教学作风,创设和谐、平等的适学氛围,激活学生的主体意识,强化学生的自主精神,就成为促成学生潜在的创新之火迸发异彩的必要先导,成为关键。
二、创设问题情境,培养学生的思维能力
数学课堂教学就是不断地提出问题并解决问题的过程,问题是数学的心脏。因此,无论是在数学教学的整个过程,还是在教学过程的某一环节,都应该十分重视数学问题情境的创设。在情境创设中要尽量创设一些与社会实践有关联的、符合学生认知水平的情境,把将要学习的新知识恰到好处地从生活中引入,引导学生生疑,从而提高学习数学的兴趣,有效地激活学生的思维,激发求知欲。例如在《等比数列》的引入中,我设计了如下情境:在我们的生活中常见的事故是交通事故,而酒后驾车是导致交通事故最重要的原因之一。交通法规定:每100ml血液中,酒精含量达到20mg-79mg,属于酒后开车;酒精含量达到80mg以上,属于醉酒驾车。实验表明,用45分钟缓慢喝下一瓶啤酒,紧接着喝三杯茶,5分钟后测试结果,酒精含量就已达到60mg。如果这时开车,就已是酒驾。而喝完一大纸杯的红酒或白酒,便是醉酒。如果某人喝完酒后血液中的酒精含量为300mg,再不喝酒的前提下,血液中的酒精含量以每小时50%的速度减少,他至少要经过几个小时才可以驾驶机动车?这一现实问题的提出立马吸引了学生的注意力,从而引出和构建了等比数列的概念。
三、注重反思总结,培养学生的数学思维能力
反思是数学思维活动的核心和动力。在数学教学活动中,教师要引导学生对每一道例题、每一堂课进行反思总结,通过反思让学生去沟通新旧知识的联系,寻找解决问题的方法,总结一般规律,揭示问题的本质,使学生更加深化对知识形成过程的理解,提高和优化解题能力,从而培养学生的数学思维能力。例如在讲到“有限制条件的组合问题”时,通过相关习题的训练后,让学生反思解决此类问题的规律,学生得出以下结论:解决有限制条件的组合问题的基本方法是“直接法”和“间接法”。其中用直接法求解时,应该坚持“特殊元素优先选取”的原则,优先安排特殊元素的选取,再安排其他元素的选取。而选择间接法的原则是“正难则反”,也就是若正面问题分类较多、较复杂或计算量较大,不妨从反面问题入手,试一试看是否简捷些。特别是涉及“至多”、“至少”等组合问题更是如此,此时正确理解“都不是”、“不都是”、“至多”、“至少”等词语的确切含义是解决这些组合问题的关键。所以,经常性地反思是一种良好的思维习惯,不管是对一道题的反思还是对一堂课、一章节内容的反思,都可以帮助学生对所学的数学知识以及数学思想和方法得到再认识,提高学生的理性思维水平。
总之,对学生数学思维能力的培养,并不是一朝一夕就可以完成的,需要教师长期坚持,持之以恒地从每一堂课根据学生的实际情况,通过各种手段,逐步地、有意识地培养,这样必定会有所成效。
【关键词】高中数学;思维能力;提高
数学能力是人们在从事数学活动时所必需的各种能力的综合,而其中数学思维能力是数学能力的核心。高度的抽象性是数学最本质的特点,数学的抽象性导致了极大的概括性,抽象和概括构成了数学的实质,数学的思维是抽象概括的思维。因此,抽象概括能力构成了数学思维能力的第一要素。
一、创新意识的培养
首先注重问题的教学,以问促思,以问促变,以问促创新意识的培养。好的问题应充分体现必要性和实用性,能激发认知需求,好的问题能诱导积极探索,促进知识的深化;好的问题往往是新知识的生长点,内在联系的交叉点,更是创新思维的启动点;好的问题能促进学生展开积极的活动,从而获得主动地发现机会。其次重例题的选择及变式,培养学生的创新意识。教师对教学中的例题的设计和选择,要有针对性;要进行一题多解的训练,要引导学生对原理进行广泛的变换和延伸,尽可能延伸出更多相关性、相似性、相反性的新问题,进一步发展学生的创造性思维。最后创设民主氛围,激发主体意识是关键。主体意识是指作为认识和实践活动主体的人对于自身的主体地位、主体能力和主体价值的一种自觉意识,是主体的自主性、能动性和创造性的观念表现。学生主体意识的强弱,在某种意义上决定着其对自己身心发展的自知、自主、自控的程度。主体意识愈强,学生参与自身发展、在学习活动中实现自己的本质力量的自觉性就愈强。高中数学作为一门基础学科,主要是用来传播和再现前人研究。发现所积累的科学成果的,不再具有首创性,加上其自身严谨的逻辑性和抽象的理性,要求高中数学的创造教育必须创设一定情景、氛围,引导、启发学生模拟、探究原科学家的实践活动过程,呼唤学习主体能动参与联想、判断、推理、综合分析、归纳等学习探究活动。因此,教师在教学中发扬民主教学作风,创设和谐、平等的适学氛围,激活学生的主体意识,强化学生的自主精神,就成为促成学生潜在的创新之火迸发异彩的必要先导,成为关键。
二、创设问题情境,培养学生的思维能力
数学课堂教学就是不断地提出问题并解决问题的过程,问题是数学的心脏。因此,无论是在数学教学的整个过程,还是在教学过程的某一环节,都应该十分重视数学问题情境的创设。在情境创设中要尽量创设一些与社会实践有关联的、符合学生认知水平的情境,把将要学习的新知识恰到好处地从生活中引入,引导学生生疑,从而提高学习数学的兴趣,有效地激活学生的思维,激发求知欲。例如在《等比数列》的引入中,我设计了如下情境:在我们的生活中常见的事故是交通事故,而酒后驾车是导致交通事故最重要的原因之一。交通法规定:每100ml血液中,酒精含量达到20mg-79mg,属于酒后开车;酒精含量达到80mg以上,属于醉酒驾车。实验表明,用45分钟缓慢喝下一瓶啤酒,紧接着喝三杯茶,5分钟后测试结果,酒精含量就已达到60mg。如果这时开车,就已是酒驾。而喝完一大纸杯的红酒或白酒,便是醉酒。如果某人喝完酒后血液中的酒精含量为300mg,再不喝酒的前提下,血液中的酒精含量以每小时50%的速度减少,他至少要经过几个小时才可以驾驶机动车?这一现实问题的提出立马吸引了学生的注意力,从而引出和构建了等比数列的概念。
三、注重反思总结,培养学生的数学思维能力
反思是数学思维活动的核心和动力。在数学教学活动中,教师要引导学生对每一道例题、每一堂课进行反思总结,通过反思让学生去沟通新旧知识的联系,寻找解决问题的方法,总结一般规律,揭示问题的本质,使学生更加深化对知识形成过程的理解,提高和优化解题能力,从而培养学生的数学思维能力。例如在讲到“有限制条件的组合问题”时,通过相关习题的训练后,让学生反思解决此类问题的规律,学生得出以下结论:解决有限制条件的组合问题的基本方法是“直接法”和“间接法”。其中用直接法求解时,应该坚持“特殊元素优先选取”的原则,优先安排特殊元素的选取,再安排其他元素的选取。而选择间接法的原则是“正难则反”,也就是若正面问题分类较多、较复杂或计算量较大,不妨从反面问题入手,试一试看是否简捷些。特别是涉及“至多”、“至少”等组合问题更是如此,此时正确理解“都不是”、“不都是”、“至多”、“至少”等词语的确切含义是解决这些组合问题的关键。所以,经常性地反思是一种良好的思维习惯,不管是对一道题的反思还是对一堂课、一章节内容的反思,都可以帮助学生对所学的数学知识以及数学思想和方法得到再认识,提高学生的理性思维水平。
总之,对学生数学思维能力的培养,并不是一朝一夕就可以完成的,需要教师长期坚持,持之以恒地从每一堂课根据学生的实际情况,通过各种手段,逐步地、有意识地培养,这样必定会有所成效。