非局部对称相关论文
非线性偏微分方程的解能够提供很多的物理信息,以便于更深入地了解物理现象,从而导致进一步的应用,因此对非线性偏微分方程的解析......
I. S. Krasil’shchik和A. M. Vinogradov提出的微分方程的覆盖为可积系统中出现的非局部现象提供了严格的几何解释,Wahlquist-Est......
近几十年里,对Ermakov系统的讨论已经有了重要的成果Ermakov系统是一对相互耦合的二阶微分方程,它和Pinney方程具有相似的性质,与......
如今非线性现象越来越多的出现在自然科学与社会科学中,用来描述该现象的微分方程受到相关数学家和物理学家的关注.本文主要研究了......
非线性现象普遍存在于数学,物理等各学科,随着对它深入的研究,非线性科学也渐渐发展成为一门重要的综合学科.其中在许多偏微分方程......
本文利用截断Painlevé分析,研究了(2+1)维广义浅水波方程的Schwartzian形式,并通过方程的Lax对构造了此方程的非局部对称.通......
应用非线性发展方程的Lax对,研究了方程的非局部对称,给出了非局部对称的一般构造方法.由于非局部对称不能直接用于构造方程的精确......
本文主要研究辛空间、2维共形球面和n维单位球面等齐性空间中的曲线流和伪球曲面等几何结构和一些多分量可积系统之间的关系。这些......