黎曼流形中超曲面的曲率流及其几何应用

来源 :清华大学 | 被引量 : 0次 | 上传用户:sevinlee
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要研究黎曼流形中超曲面的收缩曲率流与逆曲率流在不同凸性条件下的长时间存在性和收敛性问题以及几何应用。在文章的第一部分中,我们考虑三维双曲空间中具有正数量曲率的曲面与三维球面中严格凸的曲面的收缩曲率流,证明了在不同速度函数与幂次下曲率流在有限时间内收敛于圆点。在文章的第二部分中,我们考虑三维双曲空间中具有正数量曲率的曲面的逆曲率流,证明了当速度函数取为满足一定自然条件的关于高斯曲率的非齐次函数时,逆曲率流有长时间存在性与收敛性。在文章的第三部分中,我们考虑双曲空间中horo-凸超曲面并引入对应的shifted逆曲率流。我们在初始超曲面horo-凸的条件下考虑流的长时间存在性与渐近行为,并证明了 shifted逆曲率流最终收敛到球面。因此双曲空间中的shifted逆曲率流比non-shifted逆曲率流有更好的收敛性。在文章的第四部分中,我们考虑Reissner-Nordstrom-Anti-deSitter空间中的逆平均曲率流,利用其收敛性证明了这类空间中平均凸、星型超曲面的Minkowski型不等式、带权的Alexandrov-Fenchel型不等式以及一类渐近局部双曲的 Reissner-Nordstrom-Anti-deSitter 流形上的图的 Penrose 型不等式。
其他文献
桥塔是缆索支承桥梁中重要的受力构件,尤其是斜拉桥对桥塔的刚度、承载力等力学性能有严格的要求。钢板-混凝土组合结构桥塔丰富了桥塔结构形式的选择,对于解决多塔斜拉桥中塔刚度不足等关键技术问题具有重要意义。本文基于模型试验、数值分析、理论研究等多种方法,对钢板-混凝土组合结构桥塔从界面连接、塔壁构件、桥塔整体三个层面展开了研究,在组合桥塔的受力机理分析及设计方法研究方面取得的主要成果如下:(1)设计了一
转录组学是分子生物学中最重要的研究领域之一。近十年来,随着高通量测序技术的问世,转录组学的研究得到了空前的发展,相关的研究成果也在不断地刷新人类对生命现象的认知。由于高通量测序数据具有读段短、数量大的特征,与其相关的数据分析离不开计算机的支持。有力的数学模型和高效的算法设计成为近十年来转录组学研究中的关键。本文基于高通量转录组学数据,分别对转录组中互补的两类RNA——编码RNA和非编码RNA中的重
如果一个边染色图的每条边的颜色均不相同,我们则称其是彩虹的。如果一个边染色图的任意两条相邻边颜色均不相同,我们则称其是正常染色的。图H在图G中的反拉姆齐数,记作ar(G,H),是边染色的图G中使得其不含彩虹子图H所能用的最多的颜色数。图H在图G中的广义反拉姆齐数,记作pr(G,H),是边染色的图G中使得其不含正常染色子图H所能用的最多的颜色数。反拉姆齐数最早是由Erd(?)s等人于1973年提出的
低维强关联体系中的拓扑物态是凝聚态物理的研究热点之一,其中的准粒子激发可以用来实现拓扑量子计算。作为超越Ginzburg-Landau-Wilson范式的物态,拓扑物态中包含一种全新的序——拓扑序,研究表明拓扑序起源于系统基态波函数中的量子多体纠缠。为了从微观的角度有效地描述量子多体纠缠,一种叫做张量网络态方法的新颖的工具应运而生。本文另辟蹊径,从基态波函数的张量网络态表示出发,刻画低维强关联体系
微米尺度细颗粒在静电与流体作用下的迁移、团聚、堵塞、沉积等过程广泛存在于自然界和工业界中。以燃煤电厂中的电袋复合除尘技术为例,微米颗粒在外电场作用下发生荷电及极化,同时在静电单元的极板上沉积或进一步形成二次扬尘,最终进入到滤料过滤单元被纤维捕获。研究上述过程中的底层物理机理,颗粒间相互作用与宏观表征效果之间的关联,有助于改进技术设备、提高过滤效果。前人对微米颗粒在静电作用存在下过滤机理的研究仍较为
一般环境是钢筋混凝土结构最为常见的服役环境。在大气与水分共同作用下,混凝土中物质迁移随环境作用不同而具有不同的机理。因此,无法用单一模型来表征钢筋混凝土结构的劣化过程,且目前对一般环境下钢筋混凝土结构耐久性设计的全寿期维护策略与材料选择缺乏深入研究。理解对应于一般环境不同环境作用的混凝土劣化机理,并建立相应的劣化动力学模型,是建立一般环境下混凝土耐久性设计的性能指标体系的重要前提,也是进行基于全寿
矩阵的奇异值分解(SVD)和矩阵对的广义奇异值分解(GSVD)是数值线性代数和科学计算领域的两种标准分解,在数值计算和工程技术领域有着非常广泛的应用背景,其有效可靠的计算具有高度的挑战性.对于SVD的计算,我们提出了计算大规模矩阵的一个或多个内部奇异三元组的调和提取和精化调和提取的Jacobi-Davidson(JD)型SVD(JDSVD)方法.这两种方法在每一步外迭代中都需要使用迭代法近似地求解
辛钦系统在数学的诸多领域都扮演了重要角色,比如,几何朗兰兹纲领,P=W猜想,基本引理,仿射Springer纤维的几何等等。我们固定代数闭域k上的一条光滑射影曲线C。我们主要探究曲线C上结构群是一个单连通半单代数群G的parahoric辛钦系统的几何。添加parahoric条件在共形块的Verlinde公式以及研究曲线上主丛模空间的退化的研究中是一个重要手段。我们首先简要概括[1],[2]中对应主丛
科学与工程研究中的很多问题可以转化为定义在无界区域上的偏微分方程的求解问题。人工边界方法是求解无界区域偏微分方程的一种有效方法。通过引入恰当的人工边界,并添加准确或者近似的人工边界条件,我们可以把无界区域问题转化为有界区域问题。随后,我们可以采用常规的数值方法求解得到的有界区域问题。在本文中,我们首先提出三维无界区域Poisson方程的快速有限元算法,包含外问题和管道问题。我们推导出准确的Diri
本文研究了超度量空间上的热核估计,主要用Davies方法得到纯跳狄氏型的热核上界估计和用Feynman-Kac变换得到带位势的非局部算子的热核估计。本文分为两个部分。第一部分,利用Davies方法,得到了超度量空间上纯跳狄氏型的热核上界估计。首先,考虑齐次空间,从热核的上对角估计和跳跃核的尾部估计出发,得到了超度量空间上热核上界的最佳估计。利用超度量性质,发现了一个新现象:当两个点被任意一个半径大