Erd(o)s--Graham--Spencer猜想及相关数论问题的研究

来源 :南京信息工程大学 | 被引量 : 0次 | 上传用户:zyx271724361
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
其他文献
 本文对平面五体和七体问题的新周期解进行研究,论文的第一部分的主要工作是考虑5个天体的运动.三个天体在同一个轨道上运动,周期是1,另外两个天体的运动周期是1/3.运用变分方
本文主要研究预定曲率及曲率测度的闭星形超曲面解的梯度估计,在研究存在性的时候,通常会有一些degree理论和连续性方法,,先验估计是必不可少的,其中梯度估计是先验估计的一部
自从Takagi和Sugeno提出T-S(Takagi-Sugeno)模糊模型以来,有很多学者从不同的方面对这一模型进行了研究,比如,稳定性分析,观测器设计,滤波设计,时滞等等,在研究的过程中,Lyap
本文主要讨论了有限交换环上的多项式函数和置换多项式,得到了一系列的结果。  首先,我们讨论了剩余类环Z/plZ上的多元奇异置换多项式,得到了两个结果:一是得到了奇异的多元多
  1992年,Fokas,Its和Kitaev建立了一般正交多项式系和Riemann-Hilbert问题的联系。1993年,Deift和Zhou提出了非交换的最速下降法,用以解决震荡的Riemann-Hilbert问题。其后,199
  本文对解析函数空间上的算子理论和Landau-Lifshitz型方程进行了研究。文章描述了Toeplitz算子和复合算子理论的发展概貌,讨论了Dirichlet空间上某些Toeplitz算子的Fredho
本文主要分两部分,第一部分主要研究Banach空间的非线性算子半群的不动点理论,第二部分研究非线性算子半群的遍历理论.本文第二章主要利用乘积拓扑网等技巧,首先在具Opial条件
一般的线性算子理论及它们生成的算子代数理论在泛函分析成为一门独立的学科之前的上世纪二,三十年代前后,就已经得到了飞速的发展。同时伴随着它们在动力系统和量子物理学巾的
学位