论文部分内容阅读
超级电容器是一种新型的绿色储能器件,其储能性能介于二次电池和传统电容器之间。超级电容器的主要优点是充放电速率快、效率高;其主要缺点是能量密度低。如何提高超级电容器的能量密度已迫在眉睫。根据E=1/2CV2可知,提高超级电容器的能量密度可以通过两种有效的途径:一个是提高电极材料的电容值(C)。已进行的研究表明,高性能的超级电容器需要高性能的电极材料,电极材料不仅要求具有一般材料所具备的固体氧化还原性能,而且要求孔结构与比表面积的匹配性。基于此,本论文将具有多孔结构、大比表面积的介孔碳CMK-3作为载体,成功制备出Ni(OH)2/CMK-3、Co(OH)2/CMK-3和聚吡咯/CMK-3三种新型复合材料。三种新型复合材料拥有独特的多孔结构和大的有效比表面积,得到了高的比电容值;另一个提高超级电容器的能量密度的途径是增大电容器的工作电压(V)。为了进一步优化三种新型复合材料的电位窗口以提高能量密度,将复合材料与介孔碳组成混合型电容器。具体开展的研究内容如下:(1)将成功制备出的介孔碳CMK-3作为载体,利用简单的液相沉淀方法合成Ni(OH)2/CMK-3和Co(OH)2/CMK-3复合电极材料。利用XRD、SEM、TEM和BET等技术对电极材料的微观结构和形貌进行了分析。研究表明:Ni(OH)2/CMK-3和Co(OH)2/CMK-3复合电极材料均具有大比表面积和分级多孔结构。复合材料的分级多孔结构分别存在微孔、介孔、大孔,三种不同尺度的孔结构。其中,大孔结构是由活性材料的纳米片堆砌而成,形成“离子缓冲水池”,为活性离子提供了快速进出电极表面的扩散通道;介孔结构是来自于CMK-3本身的孔结构,为活性离子扩散到电极的体相提供了导电通路,有利于降低离子扩散阻抗,使得离子扩散速率加快;此外,CMK-3介孔壁间的微孔结构可提供更大的双电层电容。复合材料中纳米片状结构具有较大的比表面积,有利于充分利用电极材料的电活性位发生氧化还原反应,使得该系列复合材料具有非常高的比电容值。在5mA/cm2的电流密度下,Ni(OH)2/CMK-3 (15wt%CMK-3)和Co(OH)2/CMK-3 (20wt%CMK-3)复合物分别具有2570和753F/g的超高比电容值。(2)在(1)的基础上,将制备出的CMK-3在不同浓度的HNO3溶液中进行表面修饰,通过化学氧化聚合的方法,将修饰后的CMK-3(m-CMK-3)作为载体与导电聚合物聚吡咯(PPy)结合,制备得到PPy/m-CMK-3复合材料。SEM研究结果表明,PPy薄层在载体m-CMK-3的碳纤维束上包覆,该复合物结构疏松,呈三维多孔结构,孔隙率增加,渗透性改善,有利于促使电解液中的活性离子扩散到电极表面和体相当中,发生氧化还原反应,产生大的法拉第赝电容。m-CMK-3的含量为18 wt%时,PPy/m-CMK-3复合材料比容量高达427 F/g。m-CMK-3的三维多孔结构、大比表面积和表面活性在优化PPy/m-CMK-3复合材料的结构上起了重要作用,使活性物质PPy更分散,提高了PPy的利用率。此外,良导体m-CMK-3载体会使得PPy/m-CMK-3复合电极材料的电阻系数减小,进一步提高了电极的大功率特性和电化学循环稳定性。(3)介孔碳CMK-3在浓HNO3溶液中进行表面修饰,表面含氧官能团对CMK-3的比电容有明显提升作用,由145F/g增加到200 F/g。引入含氧官能团的CMK-3更适合于高功率超级电容器应用。考虑到金属氧化物和导电聚合物电位窗口均较窄,其功率特性尚需进一步提高。结合CMK-3材料自身优良的导电特性,提出以介孔碳基纳米复合物为正极,表面修饰过的介孔碳为负极组装混合型超级电容器。经过测试,基于Ni(OH)2/CMK-3、Co(OH)2/CMK-3和PPy/m-CMK-3复合电极的混合电容器的电位窗口得到大幅度的提高,三种电容器在5mA的充放电电流下,其比容量分别为92.5F/g、122F/g和57F/g。电化学性能的改善得益于以较大比表面积和适当孔径分布的CMK-3为负极,可以促使纳米复合物在较为宽的电位窗口内通畅地进行法拉第反应,维持其优异的电容性能。另一方面,电位窗口的提高,极大程度上改善电容器的功率密度和能量密度,尤其在较大的电流密度下更有优势。此外,三种混合电容器的都有具有优越的循环稳定性,1000次循环后比电容量均保持在90%以上。