复杂超网络重要测度的研究

来源 :陕西师范大学 | 被引量 : 6次 | 上传用户:alwbgs
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在自然界和人类社会中广泛存在着大量的复杂系统都可以通过复杂网络来加以描述,如因特网、信息网、交通网络、电力网络和社会网络等.随着现实网络规模的日益扩大和连接的日益复杂,用一般的网络拓扑结构和理论有时并不能全面刻画真实网络的特性,超网络随之应运而生,它为研究超大规模的网络系统提供了崭新的视角.在超网络的相关研究中,超网络重要测度的研究是最基本也是最重要的一个方面.本文以Estrada指标和谱半径作为复杂超网络的结构特性和动力学性质的度量指标,进行了若干图的极限性质方面的探索.另外,构建了一类典型确定性小世界超网络,并研究了相关的拓扑性质.本文的主要研究内容和成果体现在以下几个方面:1.分析了ER随机图、WS小世界和BA无标度三类典型复杂网络的子图中心性分布.基于仿真结果,讨论了它们的相似性和差异.2.讨论了k-均匀线性超树的Estrada度的界.用H(n,k)表示n阶的k-均匀线性超树的集合.对k=3,4时任意的H∈H(n,k),通过考虑H的邻接矩阵,利用归纳法及移接变形的技巧,分别刻画了此时Estrada测度达到最大和最小的k-均匀线性超树.进一步地,作为一个推论,给出了k-均匀线性超树中前2大Estrada测度的超树.用H△(n,k)表示给定最大超度△的n阶k-均匀线性超树的集合,采用类似的方法,确定了此集合中Estrada测度的界.3.研究了k-均匀线性超树的谱半径.用H(n,k)表示n阶的k-均匀线性超树的集合.对任意的H∈H(n,k),通过考虑H的邻接矩阵,利用图谱理论的多种工具,确定了在集合H(n,3)中谱半径达到最大和最小的3-均匀线性超树,以及在集合H(n,4)中谱半径达到最大的4-均匀线性超树.4.研究了一类典型确定性小世界超网络的拓扑特性.利用节点迭代方法,提出了一类确定性小世界超网络增长模型的构建算法,理论解析了超度分布、直径和平均最短路径.利用矩阵理论,给出了该超网络邻接矩阵和Laplacian矩阵特征值的递归表达式,并仿真分析了谱分布.
其他文献
Domain理论是理论计算机科学中程序设计语言的指称语义学的数学基础.序和拓扑的相互结合,相互作用是这一理论的基本特征.正是这一特征使Domain理论成为理论计算机科学和数学研究者共同关注的领域,也使这一理论具有广泛的应用空间.自2000年以来,模糊集理论被应用到Domain理论中,形成了模糊Domain理论.目前,该理论已有较为丰富的理论成果和应用背景,并与范畴论,模糊拓扑,形式概念分析,粗糙集
本文主要讨论了三类数字集与整数扩张矩阵生成的自仿测度的谱与非谱性质.首先,利用Strichartz的一个谱对准则讨论自仿测度的谱性质,在谱的情形下,找出了它的一些谱.其次,利用自仿测度的Fourier变换零点的分布特点讨论了它的非谱性质,并指出了此时相互正交的指数函数的个数.本文的内容安排如下:第二章讨论共线数字集生成的自仿测度的谱性质.根据自仿测度的Fourier变换零点的分布特点,来讨论整数扩
健康的社会交往和稳定的社会联系能力的减弱是许多精神疾病如抑郁症,成瘾,精神分裂症和自闭症等普遍的症状之一。理解正常社会联系发育、形成的神经生物机制和遗传机制对理解上述这些精神疾病非常重要,也可为药理干预和治疗这些疾病提供可能的靶标。社会联系在生命活动中普遍存在,它可以影响社会、心理、生理和行为机能。关于社会联系的发育形成机制目前还不清楚,但是社会联系涉及一系列复杂的过程,包括通过感觉发现同伴、识别
近年来,复杂网络引起了科学家的广泛关注,已经成为包括数学、力学、物理学、计算机、生命科学、管理科学、系统科学、社会学、金融和经济学等许多科学领域的研究热点。复杂网络上的动力学或物理状态的演化是一个重要研究领域,而复杂网络上自旋系统的相变行为研究是一个具有重要意义的方向。如果给复杂网络的节点赋予某种自旋状态,给连边赋予某种耦合或相互作用就可以建立复杂网络上的自旋系统,这类自旋模型可以用于刻画诸如复杂
本文主要研究解析数论和Diophantine方程中占有重要地位的经典问题,特别是著名的Gauss和的均值估计,D.H.Lehmer问题,椭圆曲线整数点问题,指数Diophantine方程组以及其它各类Diophantine方程的可解性等特殊情形.即利用解析方法研究了一个特殊的Gauss和的均值估计,并讨论了两类椭圆曲线的整数点问题,一类指数Diophantine方程组以及三类Diophantine
产生于上世纪80年代的Quantale理论是理论计算机科学的数学基础之一,与拓扑、代数、逻辑等学科有着密切的联系.作为Quantale理论的一个相关结构,m-半格把V-半格的结构和半群的乘法运算结合起来,从而剩余格、]Erame.Qua-ntale和格序半群等都是特殊的m-半格.m-半格在Quantale理论的研究中有着重要的作用,因为每一个凝聚式Quantale都同构于某个含最大元的m-半格的V
模糊图是经典图的模糊化,也可以视为一种广义的赋权图.本博士论文主要研究了模糊软图和区间值模糊图的运算性质以及图格的有关图论方面的性质.具体内容如下:第一章,介绍了模糊图、区间数、模糊软集以及格论中的一些概念.第二章,定义了模糊图的割点、割边及块的概念并讨论了它们的相关性质,包括点和边分别成为模糊图的割点和割边的充要条件、阶至少为3的模糊图成为块的充要条件、模糊圈成为块的充要条件、模糊图中两顶点间距
量子绝热定理是量子理论中的一个定律,它揭示了具有含时哈密尔顿算符的量子系统的演化规律,同时也提供了求解薛定谔方程的近似解的一种重要方法.近年来,量子绝热定理的自洽性受到了许多学者的关注.量子态的纠缠或可分性反映了量子态的本质特性,量子纠缠被认为是量子信息处理的重要资源.本文利用算子理论和矩阵分析理论,系统研究了量子绝热演化理论与可分态的动力学性质,给出了经典的绝热定理和绝热逼近误差,提出了广义量子
赋值代数是一种与局部计算密切相关、用于描述信息处理方式的代数结构模型.赋值代数的实例涵盖了关系数据库、约束系统、信任函数、贝叶斯网、命题逻辑等多个领域.而在这些诸多实例中,由半环诱导的赋值代数扮演着重要的角色.本文主要对全序半环、约束半环诱导的赋值代数的解、解的结构及其算法等问题进行了研究;并且讨论了信息代数与信息系统之间的关系,得到信息系统与信息代数在相互诱导时连续性与紧性的较为完整的相互对应关
数学生态学是用数学方法来定量研究生态系统变化过程的一门学科.非线性分析和非线性偏微分方程理论(特别是反应扩散方程理论)的发展,以及计算机模拟仿真技术的介入,使得生态模型的定量/定性研究进入到一个新的阶段,也取得了越来越多有实际应用价值的成果.本文利用非线性理论和反应扩散方程理论来研究几类生态模型在不同边界(Dirichlet、Neumann、Robin)条件下的动力学行为.研究内容主要包括平衡态正