【摘 要】
:
近年来,复杂网络引起了科学家的广泛关注,已经成为包括数学、力学、物理学、计算机、生命科学、管理科学、系统科学、社会学、金融和经济学等许多科学领域的研究热点。复杂网络上的动力学或物理状态的演化是一个重要研究领域,而复杂网络上自旋系统的相变行为研究是一个具有重要意义的方向。如果给复杂网络的节点赋予某种自旋状态,给连边赋予某种耦合或相互作用就可以建立复杂网络上的自旋系统,这类自旋模型可以用于刻画诸如复杂
论文部分内容阅读
近年来,复杂网络引起了科学家的广泛关注,已经成为包括数学、力学、物理学、计算机、生命科学、管理科学、系统科学、社会学、金融和经济学等许多科学领域的研究热点。复杂网络上的动力学或物理状态的演化是一个重要研究领域,而复杂网络上自旋系统的相变行为研究是一个具有重要意义的方向。如果给复杂网络的节点赋予某种自旋状态,给连边赋予某种耦合或相互作用就可以建立复杂网络上的自旋系统,这类自旋模型可以用于刻画诸如复杂网络上疾病的传播、谣言的扩散等动力学、以及社会学的问题。因此,复杂网络上自旋系统相变行为的研究具有重要意义,是服务于上述应用的基础。本论文采用蒙特卡罗Metropolis抽样方法,研究了小世界网络、小世界Sierpinski垫片(small world Sierpinski gasket-SWSG)网络上的混合自旋Ising模型的相变特性,并探究了 Sierpinski垫片型晶格上损伤扩散的动力学行为。取得的主要成果如下:1、采用数值方法研究了一维NW小世界网络上混合自旋Ising模型相变的行为,结果表明,对任意随机加边概率,该网络上的混合自旋Ising系统存在连续相变。随机加边概率影响系统的临界温度,系统的相变温度和随机加边概率之间呈幂律关系。小世界网络上的混合自旋Ising模型具有平均场特性,其相变的临界指数为α = 0,β= 1/2,γ = 1,v = 2和小世界网络上的Ising模型属于同一普适类。系统的相变温度受晶格场影响,随着晶格场的逐渐增强,系统相变温度会连续减小到零。2、发现Sierpinski垫片上混合自旋Ising模型存在损伤扩散的相变现象。在转变温度以下,系统损伤不扩散,当温度高于转变温度时,系统损伤愈合。晶格场改变系统的转变温度,随着晶格场的增强,系统中自旋取0的概率增加,从而改变系统的关联程度,进而使系统损伤的转变温度降低。当晶格场足够强时,系统的损伤消失。数值模拟损伤扩散的弛豫时间揭示出系统静态临界指数Z不再是常量,Z的值是系统温度和晶格场的函数。对于给定晶格场,Z的值随温度的增加而逐渐减小;而当系统温度给定时,Z的值随晶格场的增强而减小,二者之间成线性关系。3、小世界Sierpinski垫片网络是在传统Sierpinski垫片网格上随机加边而构建,具有小世界性、自相似性、无标度性的拓扑特性。基于该网络上混合自旋Ising系统的蒙特卡罗模拟,我们计算了磁化率、比热和四阶矩。结果显示:加边条数直接影响SWSG网络上系统热力学量的特性,但不能导致系统发生有限温度相变。对系统损伤扩散的动力学研究表明,系统弛豫时间和系统尺寸间不再是简单的幂律关系,而是指数关系。系统静态动力学指数Z的值受加边的影响而不再是常量。
其他文献
黄脸油葫芦Teleogryllus emma Ohmachi&Matsuura属昆虫纲Isecta,直翅目Orthoptera,蟋蟀科Gryllidae,油葫芦属Teleogryllus。近年来,因黄脸油葫芦能入药、可食用,亦可观赏等特殊的经济价值,而得到广泛养殖。由于气候条件改变和生物防治技术缺乏,野生蟋蟀得到大量繁殖,导致农田蟋蟀发生危害的趋势明显上升。因此,了解蟋蟀蜕皮与生殖的调控机制,从而
计算理论作为理论计算机科学的基础内容之一,由自动机、形式语言、计算复杂性等方面构成.非确定性在计算理论的不同领域有着不同的重要意义,例如:在形式化语言中,非确定型自动机可对某些语言类进行刻画;在复杂性理论中,非确定性是研究NP-类问题的基础.自动机理论中,虽然非确定型自动机和确定型自动机有着相同的表达能力,但前者比后者有更简单的结构.从逻辑层面看,非确定型自动机的状态转移过程只涉及存在量词.交替自
不同于传统优化方法,神经网络具有并行处理、分布式存贮等特点.因此自Hopfield和Tank于20世纪80年代首次将神经网络应用于解线性规划问题以来,应用神经网络求解优化问题受到了广泛关注,并取得了一些重要成果.然而,许多模型仍存在状态变量多、复杂性高等不足.本文基于l1-范数问题发展现状,对该问题的神经网络模型进行研究.此外,由于l1-范数问题可以归结为极小极大问题进行求解,因此本文也研究了极小
本文对模糊测度和模糊积分理论进行了推广,建立了基于复模糊集值测度的复模糊集值函数的积分.首先给出了复模糊集值测度及其性质以及复模糊集值测度空间上的可测函数及其性质.其次研究了基于复模糊集值测度的复模糊集值函数的积分理论,最后以复模糊集值函数的积分作为融合算子,给出了常用的几种复模糊集值积分分类器融合的方法,验证了这种融合方法的可行性、有效性及优越性.具体内容如下:第一章主要介绍了经典测度、模糊测度
模糊推理是模糊控制的理论基础,鲁棒性是评判模糊推理的重要标准.在讨论鲁棒性时,扰动参数的选取极为关键.我们常用的扰动参数大多是建立在[0,1]单位区间上通常度量的基础之上.然而模糊推理的结果很大程度上取决于它的内蕴结构,蕴涵算子和模糊连接词.逻辑等价算子由蕴涵算子生成,因此用逻辑等价算子构造的扰动参数讨论鲁棒性,与逻辑推理会更为和谐.本文的第一个研究目的在于借助逻辑等价算子构造一系列的扰动参数,进
算子理论是泛函分析重要的研究领域之一,它对于微分方程,调和分析及理论物理等学科都有着深刻应用.其中谱结构,谱保持问题以及正交投影对一直是众多学者研究的热点问题.对于谱结构,Weyl型定理能很好的反映算子谱的分布特点,因此对Weyl型定理及其变形推广的研究是许多学者一直关注的问题.同时,谱结构和部分谱子集作为代数的同构不变量研究也引起了学者们的广泛关注,即谱保持问题.另一方面,基于Halmos正交投
自然科学的发展很大程度上依赖于物理、化学、生命科学等方面的进展情况,这些具体问题的数学化对它们的进一步研究是很重要的.许多数学模型可以归为反应扩散模型.近几十年来,反应扩散模型的研究已取得了很大进展.随着研究的不断深入,反应扩散模型被广泛用来探讨大量的带有扩散的动力系统。本文利用非线性分析和非线性偏微分方程理论研究了两类反应扩散模型的动力学行为.研究的主要内容包括模型平衡态正解的先验估计、不存在性
Domain理论是理论计算机科学中程序设计语言的指称语义学的数学基础.序和拓扑的相互结合,相互作用是这一理论的基本特征.正是这一特征使Domain理论成为理论计算机科学和数学研究者共同关注的领域,也使这一理论具有广泛的应用空间.自2000年以来,模糊集理论被应用到Domain理论中,形成了模糊Domain理论.目前,该理论已有较为丰富的理论成果和应用背景,并与范畴论,模糊拓扑,形式概念分析,粗糙集
本文主要讨论了三类数字集与整数扩张矩阵生成的自仿测度的谱与非谱性质.首先,利用Strichartz的一个谱对准则讨论自仿测度的谱性质,在谱的情形下,找出了它的一些谱.其次,利用自仿测度的Fourier变换零点的分布特点讨论了它的非谱性质,并指出了此时相互正交的指数函数的个数.本文的内容安排如下:第二章讨论共线数字集生成的自仿测度的谱性质.根据自仿测度的Fourier变换零点的分布特点,来讨论整数扩
健康的社会交往和稳定的社会联系能力的减弱是许多精神疾病如抑郁症,成瘾,精神分裂症和自闭症等普遍的症状之一。理解正常社会联系发育、形成的神经生物机制和遗传机制对理解上述这些精神疾病非常重要,也可为药理干预和治疗这些疾病提供可能的靶标。社会联系在生命活动中普遍存在,它可以影响社会、心理、生理和行为机能。关于社会联系的发育形成机制目前还不清楚,但是社会联系涉及一系列复杂的过程,包括通过感觉发现同伴、识别