论文部分内容阅读
硝化反应是工业化生产的有机合成方法中极其重要的一类。一方面,其产物可广泛地应用于炸药、推进剂、化工原料、医药和农药等许多领域;另一方面,芳烃硝化机理的研究对亲电取代反应基础理论发展起了很大的作用。本文主要探索了多种新型绿色的催化硝化反应体系,并借助于量化手段,从理论方面,包括硝化反应机理和部分硝基化合物的合成路线等,进行进一步研究。为了适应日益严峻的环境问题,改善工业生产中严重的污染问题,本文探索了多种绿色催化硝化体系,包括:1)纳米氧化物负载的杂多酸催化;2)酸性离子液体/N2O5体系;3)表面活性剂做相转移催化剂;4)多种高比表面的复合型固体酸催化。每个催化体系的总体研究程序如下,先通过不同的表征手段确定合成的催化剂,然后对催化硝化的反应条件进行优化,最后对催化体系的适用性和催化剂的循环次数进行考察。结果表明,这些催化体系均能减少甚至避免混酸的使用,减少废酸的排放。大部分体系还可以改变硝化产物中异构体的比值,单取代烷基苯的对邻比可以提高到1:1,单取代卤代苯的对邻比可以提高到5:1,部分二取代苯的选择性可超过9:1。改善选择性,最终可获得具有更高商业价值的硝化产物。采用量化模拟的手段,本文对理论方面的研究主要在两个方面,一是对部分催化硝化过程进行机理的研究,二是对部分合成的硝基化合物进行合成路线的研究。首先,为了深入的了解催化硝化的反应过程,本文借助Gaussian量子化学模拟软件,尝试通过计算模拟来研究其催化反应机理。在对表面活性剂催化二取代芳烃的反应模拟后发现,影响硝化产物中异构体分布的因素主要有两个,一个是空间位阻,另一个是芳烃电荷或自旋电子的分布情况,选择性是两者相互制约的结果,而通过改变其中任一因素,即很有可能使选择性发生较大改变。而在固体酸催化单取代芳烃的硝化过程中,因为空间影响相对较小,本文着重研究了固体酸催化剂中过渡金属原子与芳烃的相互作用。结果表明,这些金属原子改变了芳烃上的电荷或自旋电子的分布,最终导致选择性发生明显的变化。接着,围绕2,6-二氨基-3,5-二硝基吡啶和2,6-二氨基-3,5二硝基-1-氧-吡嗪(LLM-105)的制备合成与性能应用进行了深入的研究,先是优化了2,6-二氨基-3,5-硝基吡啶的合成条件,产率可达90%以上;因其可以做为多种潜在含能材料的中间体,进一步研究了其还原成2,3,5,6-四氨基吡啶的方法。而在对LLM-105的研究中,改进了LLM-105的合成方法,将总产率提高到了65%。借助与Gaussian着重比较了两条合成路线的不同,并进一步研究了各个基团之间的相互作用,结果表明,涵盖整个分子的大共轭体系是该物质有很好性能的关键。