基于深度学习的嵌入式语音识别系统的设计与实现

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:zhangwz2005
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着人工智能技术不断发展,当今社会,语音不仅仅是人类之间通信交流的手段,也成为人机交互的重要桥梁。近年来,语音识别技术发展飞速,开始逐渐应用到各个领域。深度学习的加入,使得语音识别的准确率有了质的飞跃,但是伴随而来的是网络模型越来越大,难以在嵌入式设备上移植和使用。而且语音数据存在一定的隐私性,存在收集困难的问题。并且在实际的语音场景中,总是存在各种噪音,包括但不限于环境噪声、设备噪声、发动机噪声等,这些噪声都会影响语音识别的效果。如何在保证语音识别准确率的情况下,最大限度地将模型压缩至适合嵌入式系统运行,成为众多学者研究的问题。本文希望通过研究端到端语音识别方法,设计出一个基于深度学习的轻量级中文语音识别模型,然后将模型移植到嵌入式设备上进行测试。本文的具体工作如下:1.针对语音开源数据集不多并且现实场景中语音环境存在噪声的问题,本文将中文语音开源数据集进行收集与整理,形成Large-Dataset,同时将深度学习方法融入传统信号处理方法设计了一个噪声抑制算法,在噪声数据集上进行测试,可以将字错误率降低1.48%。2.针对语音识别模型普遍比较庞大的问题,本文对端到端语音识别方案进行了研究,以1×1卷积核作为骨干网络的核心,通过门控线性卷积(Gated Convolutional Networks,GCN)解决长距离依赖的问题,设计了一个全卷积的轻量级神经网络,并且使用联结时序分类(Connectionist Temporal Classification,CTC)来解决输入与输出不等长的问题,实现自动对齐。3.针对汉字样本分布极不均衡的问题,本文将Focal Loss的思想与CTC Loss相结合,使其对不同分布的汉字样本具有不同的关注度,减轻样本不均衡对语音识别准确率的影响,获得了0.85%字错误率的降低。4.针对嵌入式环境内存小、计算力不足的问题,本文使用8Bit权重量化技术对模型进行压缩,将模型压缩至接近原来的四分之一;同时设计了移位量化加速方案,设计出合适的码本对8Bit量化后的模型权重进行优化,将大量的卷积乘法运算转换成移位后相加的模式,在损失0.6%字错误率的前提下将模型的推理速度在嵌入式系统上提升了40%。
其他文献
在经济科技越来越发达的今天,各个国家之间联系变的更加的紧密,海洋运输是国际间进行交流的主要方式之一。伴随着航运业的发展,海上交通事故时有发生。因此,对于船舶航行轨迹的研究变的愈发重要,通过轨迹研究,可以对船舶所处的航线进行分析,对船舶的航行状态、目的地等进行监控,及时的发现船舶出现的异常轨迹,保障海上交通的安全。本文基于自动识别系统(Automatic Identification System,
近年来基于卷积神经网络的机器学习技术在社会生产发展与人们日常生活得到了越来越广泛的应用,在图像分类、目标检测、语音识别、自然语言处理等任务上发展尤为突出。不幸的是,神经网络对很容易受到对抗样本的攻击。对抗样本是一种通过在干净的原始数据上添加专门设计的的微小噪声,使神经网络模型做出错误判断的人造样本。对抗样本的存在对人工智能安全造成了极大的威胁。神经网络模型技术在安全敏感领域(如自动驾驶)的落地无法
在当代,医学成像主要依赖高科技成像设备,医生主要通过医学图像,对病人进行疾病的诊断。因此对医学图像进行超分辨率重建,提升医学图像的分辨率具有重要的现实意义。本文聚焦于医学图像领域,应用深度学习的技术,对医学CT图像进行超分辨率重建,旨在提高CT医疗图像的重建像素质量,辅助医生进行病变目标的检测,减少漏诊和误诊的概率。医学影像受困于成像原理,成像设备,以及病人安全等硬件条件的限制,图像分辨率往往不如
随着移动互联网的快速发展,导航系统被广泛地应用于日常生活之中。现有的导航应用程序大部分提供的是逐步导航技术,其主要来自基础道路的网络拓扑信息,因此逐步导航被认为是将物理世界中的度量简化为简单口语描述的工具(例如距离、时间、转向等信息)。这种导航描述方式忽略了人们对地理空间的固有认知,对于那些了解城市布局的司机来说,往往是冗长和复杂的。这样不仅使得驾驶员对导航描述更为模糊,还占用了大量的终端资源。而
图像语义分割作为计算机视觉领域的一个像素粒度核心研究问题,其目标是为输入图像的每一个像素预测一个预先定义的语义类别。图像语义分割作为当前诸多领域的关注重点,对医疗诊断、机器人感知、自动驾驶、视频监控、增强现实等真实应用领域的发展可以提供强有力的支持。当前的图像语义分割模型要想获得足够的分割精度需要大量带像素级标注的样本进行模型的训练。然而由于像素级标注的获取需要耗费大量的人力成本,这导致所需样本不
图像分类识别已经成为了人工智能领域一个重要的组成部分,是人们当下研究的热点话题。卷积神经网络是图像分类识别中的一项关键技术,被大规模应用于GPU、CPU等多种不同平台上。为了满足不同的部署需求,尤其是在嵌入式移动端中,需要综合考虑功耗体积等因素,CPU或GPU便无法胜任这样的工作。而FPGA凭借着高性能、低功耗的特点,成为了卷积神经网络硬件加速的一个重要选择。本文基于FPGA实现了一个卷积神经网络
随着人工智能的蓬勃发展,深度神经网络在图像分类,自动驾驶,场景监控,医疗健康等领域都得到了广泛的应用。在深度神经网络取得巨大成功的同时,其安全性问题也越来越受人关注,当前大量研究表明神经网络易受对抗样本攻击,以图像识别为例,通过在原始图像上添加一些人眼不可识别的微小扰动就能让模型无法正确运作。在人工智能越来越频繁地运用在需要高安全性应用的时代,对抗样本的存在无疑会成为人工智能发展的一大阻碍,因此研
近十余年来,以深度神经网络为主的机器学习技术取得了长足的进步,这得益于高性能计算软硬件和实际应用的不断发展。现如今已有大量组织和企业提供基于机器学习系统向大众提供服务,例如面部、语音识别、照片优化等等。深度神经网络对算力的需求也不同以往,因此对分布式神经网络系统的需求也逐渐增加。另一方面,在边缘计算应用的不断深入,云端、边缘和终端的分层网络日渐成熟,这带来了更丰富的数据来源、计算设备、应用需求和隐
无人驾驶系统是一个非常庞大,复杂的各种高级模块组成的综合性系统,在满足基本驾驶功能的同时,更重要的是作为智能系统,需要和人类进行交互,分析人类的驾驶意图,将人类意图结合到驾驶策略中。同时,为了能够更加安全的确保驾驶过程的安全以及驾驶意图的正确执行,智能驾驶系统需要能够感知并分析驾驶员/乘客的状态,从而确保命令的正确下达与驾驶过程的相对安全,因此本文从两方面出发建立基于深度学习的驾驶决策分析系统,一
近年来,深度学习在许多领域得到了广泛的应用,也有许多针对多任务的深度模型。多任务学习在建模的过程中,既需要考虑任务之间的差别,避免负向的增长,又需要考虑到任务之间的共同之处。多任务学习的优势也正在于此。在现实世界中的有些任务间存在千丝万缕的联系,分解成多个子任务去独立求解是不正确的。而在实际的任务中,通过更多任务的辅助或者对照,可以帮助关注到最重要的特征,提升泛化性,提高性能。但基于深度学习的多任