复杂化学键理论在A0.5B0.5CO4体系微波特性调控中的应用研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:zhuspecial
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
作为应用于电子通信领域的基础关键性材料,微波介质陶瓷具有广阔的应用前景。发展至今,陶瓷材料在微波频段介电性能的改善问题始终是研究的重点以及难点。然而目前该领域始终存在以“经验”作为指导思想展开实验,尽管存在可借鉴性,却无法从根本上利用理论指导实验,在研发新体系或对材料进行改性研究时没有“指挥棒”的作用发挥,因此寻找一种行之有效的理论成为研究学者的迫切需求。众所周知介质陶瓷的独特性体现在微波特性随晶体结构各异,通晓晶体结构对介电性能的影响程度是实现从根本上调控介电性能的关键环节。因此在保证材料烧结特性优异的前提下,评判由晶体结构因素产生的本征介电性能是研究结构-性能关系的枢纽。复杂化学键理论(简称为P-V-L化学键理论)通过描述二元晶体化学键的离子性、共价性以及电极化率等重要化学键性质参数,将晶体结构与介电性能进行了关联。随着多元晶体的二元键子式拆分理论提出,P-V-L复杂化学键理论能应用于多元体系,并有望为评判微波介质陶瓷的介电性能提供依据。因此,以改善微波介质陶瓷开发与性能研究领域存在的“盲区”现象为契机,从化学键性质参数角度出发,为了建立晶体结构与介电性能的联系,本文利用P-V-L复杂化学键理论,结合晶体结构精修与晶格振动光谱等手段,建立了A0.5B0.5CO4体系化学键性质参数与微波介电性能的关联模型,系统阐述该理论在分析晶体结构、评判以及预测微波介电性能上的优异表现,并基于模型提出了一种指导材料掺杂改性的方法,基于此,以AO-BO2-C2O5体系为验证对象,分别在低介至高介的Wolframite、Ixiolite、Trirutile与Rutile相中通过模型指导掺杂改性实验,取得了理论与实验一致的微波特性表现,验证了该模型的正确有效性。为拓展微波介质陶瓷材料在低温共烧陶瓷技术领域(LTCC)的应用前景,进一步通过影像烧结、烧结激活能以及陶瓷高温溶解性等手段,深入分析了中介ZnO-TiO2-Nb2O5系微波介质材料的低温烧结机理,制备出低温烧结下具有竞争性微波介电性能的ZnO-TiO2-Nb2O5基LTCC材料。本文的研究内容主要有:(1)在相同元素但不同取代量的(Zn1/3Nb2/3)xTi1-xO2(x=0.45,0.75,1)体系中,随x变化出现三种代表性晶体结构的微波介质陶瓷体系,涵盖低介、中介与高介电常数。利用P-V-L复杂化学键理论分别对这三种体系进行理论计算,总结对介质极化以及晶格稳定性起主要贡献的化学键种类,提出对于调控微波特性的改性途径,并通过实际掺杂实验以及研究报道进行佐证。当x=1时对应于铌铁矿Zn Nb2O6陶瓷,通过化学键离子性、电极化率以及晶格能大小判定发现Nb-O键对微波介电性能具有关键作用,该结论通过远红外反射光谱以及复介电常数函数分析得到印证。当x=0.75以及x=0.45时,体系晶体结构转变为锰钽矿Zn0.5Ti0.5NbO4以及金红石Zn0.15Nb0.3Ti0.55O2,利用P-V-L复杂化学键理论评判了阳离子格位的化学键性质参数对介质极化以及晶格稳定性的贡献大小。(2)在不同元素但相同取代量的(A2+1/3C5+2/3)0.75B4+0.25O2体系中发现三种不同晶体结构的微波介质陶瓷材料,如中高介Rutile相A0.5Ti0.5Nb O4、中介Trirutile相A0.5Ti0.5Ta O4以及低介Wolframite相A0.5Zr0.5Nb O4体系。同样地,利用P-V-L复杂化学键理论评价了阳离子格位的化学键性质参数,提出了改善微波特性的方法途径,如Rutile相A0.5Ti0.5Nb O4结构中Nb-O键与Ti-O键相较于A-O键对微波介电性能的调控更加显著。为此实验通过对Ti位以及Nb位分别掺杂等价Sn4+离子与Ta5+离子,利用P-V-L复杂化学键理论结合远红外反射光谱以及本征介电性能分析清晰明了地对比了Ti位与Nb位的调控效果,并验证了P-V-L复杂化学键理论对性能调控预测的准确性。在Trirutile结构A0.5Ti0.5Ta O4材料中化学键性质参数计算表明了阳离子M2格位(如在Ni0.5Ti0.5Ta O4中该格位由Ti/Ta2占据)在晶格能稳定性方面占据主导作用,为此将Ti位替换为Sn元素,实现了大幅度提高晶格能的目的,最终达到了降低介质损耗并提高Q×f值的效果。而在Wolframite结构A0.5Zr0.5NbO4(A=Mn,Zn,Mg,Co)体系中,通过分析表明Nb-O键具有最大的离子性、电极化率以及晶格能占比。首先当A位元素从Mn直接变化至Co时,陶瓷材料的烧结特性发现明显改变,外部损耗诸如晶粒生长以及晶界损耗对Q×f值起到了不可忽视的作用。为此在不明显改变烧结特性的前提下,研究报道显示Nb位掺杂Sb5+离子对于降低介质损耗产生了最优效果,与P-V-L复杂化学键理论保持一致。(3)利用Li2O-B2O3-SiO2以及ZnO-B2O3-SiO2玻璃,研究了两种不同的ZnO-TiO2-Nb2O5基微波介质陶瓷的低温烧结表现。实验通过浸润性、溶解性、烧结激活能、动态收缩率表征分析了ZnO-TiO2-Nb2O5基LTCC材料的低温烧结动力学机理,通过玻璃在高温条件下形成液相或低共熔混合物,由于陶瓷浸润并溶解在高温玻璃相中导致烧结激活能大幅降低,使得低温烧结过程更容易进行,并通过调节玻璃助剂的含量以及工艺参数,最终在900℃烧结温度下获得了优异微波介电性能的材料体系:εr=36.7,Q×f=20000 GHz,τf=7 ppm/℃,拓展了Zn O-Ti O2-Nb2O5基微波介质陶瓷在LTCC领域的应用。
其他文献
仿生扑翼微型飞行器,是一种通过模仿自然界飞行生物飞行机理实现扑翼飞行的小型飞行机器人。由于仿生扑翼飞行方式相比于人类熟知的固定翼和旋翼飞行方式所具备的多种优势,例如尺寸小、灵活性、隐蔽性以及仿生性等优势,使得仿生扑翼微型飞行器在民用探查、军事侦察和打击等领域具有广泛的应用前景,因此仿生扑翼微型飞行器已经成为未来无人飞行器研究和发展的热点。仿生扑翼微型飞行器主要是通过扑翼机构,将电机驱动的旋转运动转
航天科技的发展日新月异,以无人机为代表的航空飞行器变得越来越复杂,人们对航空器的稳定性、安全性和可靠性也提出了更高的要求。无人机飞控系统的故障诊断与容错控制技术可以提高航天器的自主运行能力。此外,复杂多变的空间环境不可避免地对无人机造成影响,自身长时间运行也会使系统产生不同类型的故障,其中44%是执行器故障造成的。因此,研究执行器的故障诊断和飞控系统的容错控制,对延长设备使用寿命,提高系统稳定运行
Cs-Pb-Br型卤化铅钙钛矿包括三维(3D)的CsPbBr3、零维(0D)的Cs4PbBr6、二维(2D)的CsPb2Br5等,因其具有强发光性能,被广泛应用于发光二极管、激光、太阳能电池等光电器件。其中,3D的CsPbBr3钙钛矿是唯一确定拥有本征光致发光(PL)性能的材料,而关于2D的CsPb2Br5钙钛矿和0D的Cs4PbBr6钙钛矿的发光来源却众说纷纭。部分研究者们认为纯的CsPb2Br
吸波技术在军用和民用领域均得到了广泛的应用,完美的吸波材料应该具有宽带、宽入射角度、极化不敏感、低剖面等特性。基于超材料设计理念的吸波体具有设计自由度高、结构简单、剖面低以及吸收率高等特点,这使得超材料吸波体具备实现完美吸波材料的潜力,在近十年得到了飞速的发展。超材料吸波体在带宽方面的研究已较为成熟,但对于宽角度超材料吸波体的吸收理论和设计方法的研究仍然相对欠缺,亟待挖掘新的设计理论和设计方法。本
光学微腔,通过循环谐振作用将光场长时间限制在其中,可极大地提升腔内光功率,因此被广泛应用于基础物理研究以及光电子器件领域。相比其他类型的光学微腔,回音壁模式光学微腔具有极高的品质因子与较小的模式体积,显著地增强了光与物质的相互作用,因此受到研究人员的极大关注。过去的二十年间,不同材料以及形态的回音壁模式光学微腔被发明并制备,以满足不同的研究与应用需求。基于回音壁模式光学微腔的非线性效应,特别是光学
二氧化钒(VO2,Vanadium dioxide)在接近室温时(341K)会发生可逆的绝缘-金属转变(IMT,Insulator-Metal Transition),并伴随着在太赫兹(THz,Terahertz)波段显著的透射率变化,因此被广泛用于制备具有动态调制效果的THz器件。近些年来对VO2薄膜生长机理的研究进展迅速,降低了具有高调制性能的VO2薄膜的制备成本,为VO2薄膜在THz可调谐器
相依序列的收敛性质是近代概率极限理论的研究热点之一,它在概率统计、金融与保险、可靠性理论、复杂系统以及计量经济学等领域有着十分广泛的应用。本文致力于研究包括NSD序列、AANA序列、ANA序列以及END序列在内的4类相依序列的极限收敛性质,利用相依序列的矩不等式和一些概率不等式,进一步研究了相依序列的完全收敛性、完全矩收敛性、强大数律以及含随机系数线性过程的强收敛定理,并获得了一些新的结果。本论文
由于能够很好地解释物理、化学、生物等领域的某些重要现象和规律,偏微分方程的理论与应用已成为重要的数学研究方向.这些理论包括方程解的存在性、唯一性、有界性、有限时刻爆破以及大时间渐近行为等.特别地,趋化性是细胞或生物体对化学刺激产生的定向运动,在胚胎发育、伤口愈合和肿瘤入侵等各种生物过程中发挥重要作用.本文研究如下三类趋化模型:(ⅰ)具有一般旋转灵敏性的吸引-排斥趋化模型(?)(ⅱ)具有一般旋转灵敏
现代微电子和集成电路技术飞速发展的同时也面临着集成度过高引起的局部热功耗过高等不可避免的问题。兴起的自旋电子学利用了电子的自旋自由度,成为了构造高密度、低功耗、非易失的新一代自旋电子学器件的基础,也推动了电子信息技术的全新变革。对自旋流的激发、传输和探测成为当今自旋电子学的研究主题。本文以液相外延法制备的超低损耗亚铁磁性绝缘体钇铁石榴石(YIG)薄膜为基础,研究了YIG/金属自旋异质结中的自旋泵浦
合作行为广泛存在于自然界和社会系统中。复杂网络上的演化博弈理论为解释自私群体中合作行为的涌现提供了有效的理论工具。复杂网络刻画了种群的拓扑结构,博弈模型描述了智能体之间的交互模式。网络结构和个体行为呈现多种多样的形式,这种多样性为选择提供了基础,因此对合作涌现至关重要。零行列式策略作为重复博弈新理论,可以单方面保证双方长期收益满足线性关系。剥削策略是零行列式策略的一个重要子集,保证了自身的收益不低