继承与突破-邵丽小说创作论

来源 :淮北师范大学 | 被引量 : 0次 | 上传用户:lvlianpeng2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
其他文献
自八十年代以来,安徽巢湖的富营养化一直处于较高的水平,微囊藻水华频繁发生,枝角类与微囊藻间的相互作用已成为研究热点。中华拟同形溞是巢湖枝角类的优势种类。通常,蜕皮是甲壳动物(如枝角类)生活史过程中的重要生理现象。一些研究已经在部分甲壳动物中筛选出与蜕皮相关的基因,但有关溞属种类蜕皮的分子机理尚不清晰。另一些研究表明,铜绿微囊藻对溞属种类的生长发育有明显抑制影响,进而干扰其蜕皮。本研究以采自巢湖的中
设K是欧氏空间Rn中具有非空内点的紧致凸集,则称K为凸体.本文主要研究关于平面凸体的Ros不等式的加强形式与广义混合宽度不等式的稳定性,以及平面星体的广义对偶混合径向不等式的稳定性.具体如下:一方面,周家足教授证明了Ros不等式:设Γ是R2中长度为L的简单光滑闭曲线,K是以Γ为边界,面积为A的闭区域.如果Γ的曲率κ处处不为零,则#12其中s为Γ的弧长,等号成立的充分必要条件是Γ为圆.在本论文第三章
溞属种类是常见的淡水枝角类,在水生食物链中起着十分重要的作用。枝角类的生活史具有孤雌生殖和两性生殖两种生殖方式。通常,孤雌生殖雌体在环境恶化时所产出的卵,可以孵化出雄体,再行两性生殖。因此,枝角类是研究生殖转化和性别决定的重要类群。目前,有关溞属种类生殖转化和雄性性别决定的分子机制研究较少。本研究对中华拟同形溞的不同发育阶段进行转录组测序,从中筛选出了与生殖转化和雄性性别决定相关的候选基因,为后续
无约束优化理论与方法作为最优化理论研究的基础,被广泛地应用于现实生活中的众多领域.随着大数据时代的来临,优化问题维数剧增,具有迭代形式简单、所需储存空间小等优点的共轭梯度法,在求解大规模问题中优势更加明显.本文对优化算法中的经典共轭梯度法进行了综述,对已有的非线性共轭梯度算法做了进一步的研究,归纳总结算法的改进思想,提出两种新的混合共轭梯度算法.首先,提出一种改进的混合共轭参数βk1,给出算法框架
常宽凸体是凸几何中一类重要的研究对象,然而在欧氏空间中,非对称常宽凸体的例子却十分稀少.著名的Blaschke-Lebesgue问题的提出,引起了数学家对常宽凸体的关注,如常宽凸体的构造与几何性质等等.本学位论文主要讨论欧氏空间中一般常宽凸体的构造,具体如下:首先,本学位论文定义了欧氏空间Rn中一类n-1维超曲面“杠杆面”Γ与它的臂映射A,见第三章.进而,证明了该类超曲面是n维常宽凸体边界的一种等
非线性共轭梯度法是优化理论中一种重要的方法,也是目前解决大规模无约束优化问题的有效方法之一.它凭借其存储信息量少,算法简单且易于编程等优点,深受诸多国内外学者的青睐.又因为近年来,计算机技术的快速革新和生产生活中许多大规模优化问题的提出,为了寻求高效快速的共轭梯度法,成为目前研究的一个重点方向.本学位论文在对诸多学者研究的成果上,提出几类不同的共轭梯度法,并研究其下降性及收敛性,通过一系列数值实验
分形理论创始于70年代,其理论基础是Hausdorff维数与测度.Hausdorf维数与测度是分形几何的两个基本概念,也是非线性科学的重要理论课题.虽然Hausdorff维数的计算与估计取得了许多有意义的成果,但是Hausdorff测度的计算与估计的进展却很缓慢,其难度相当大.目前研究的比较成熟的是满足开集条件的自相似集,其Hausdorff维数的计算已完美解决,但Hausdorff测度的研究进度
分形几何是曼德勃罗特(B.B.Mandelbrot)在20世纪80年代创立的,它提供了研究不规则几何对象的思想,方法与技巧.由于不规则集比经典几何能更好的描述自然现象,近年来,分形几何这一新兴学科被广泛应用在数学、物理、化学、生物、工程技术等学科中,它解决了各学科中出现的大量不规则几何对象问题,因而获得巨大成功.同时,不同学科中提出的大量问题也刺激了分形几何的深入发展.分形几何的创立与发展对整个科
学位
本文主要研究取值于算符域Q的算符函数有关强连续、强一致连续,强一致收敛等的一些相关性质。J.Mikusinski本人在算符域Q中引入了算符函数的连续、收敛、可导等概念,并提出了类型I收敛的定义,但由于算符域Q类型I收敛不能拓扑化,即在算符域Q中不存在拓扑使得该拓扑下的列收敛类等于依算符收敛的列收敛类,其原因在于这个收敛不满足拓扑关于列收敛的所谓Urysohn条件,由此,后来的一些学者自然地把类型I