论文部分内容阅读
本文主要研究了几类二阶非线性方程的奇摄动问题的边界层现象,在退化解是局部弱稳定的主要假设下,利用界定函数法和微分不等式理论证明了呈边界层性态的解的存在性,并给出了解的渐近估计. 全文共分四章: 第一章介绍了一般的奇异摄动问题的研究意义和概况,简述了边界层现象的由来和研究意义,并陈述了本文将要用到的主要引理及本文的主要工作和创新之处. 第二章通过构造辅助问题,选取界定函数,利用量阶的估计,讨论了具有局部弱稳定退化解的一般二阶非线性方程的奇摄动Dirichlet问题. 利用微分不等式理论证明了六种不同条件下的解的存在性,并给出解的渐近估计.最后给出两个例子说明研究成果的应用价值. 第三章通过比较方程,构造界定函数,利用不等式放大技巧,研究了具有局部弱稳定退化解的一般二阶非线性方程的奇摄动Robin问题1. 利用微分不等式理论证明了三种不同条件下的解的存在性和渐近性态.最后给出一个例子说明研究成果的应用价值. 第四章通过比较方程,构造界定函数,研究了具有局部弱稳定退化解的一般二阶非线性方程的奇摄动Robin问题2. 利用微分不等式理论证明了六种不同条件下的解的存在性和渐近性态,并给出两个例子说明研究成果的应用价值.