论文部分内容阅读
表面等离极化激元(SPPs)是一种沿着金属和介质之间的界面传播的,由自由电子和电磁场相互作用产生的电子疏密波。它具有一系列的独特光学性质,例如局域电场增强,对电磁波的亚波长束缚,非线性增强等等。由于spp沿着金属和介质之间的界面传播,在金属和介质上纵向传播的时候SPPs会呈指数衰减,因此,设计合适的金属微结构可实现对电磁波的调控。因其独特的性能而被广泛应用于增强透射,负折射率材料,超分辨率成像,生物传感等方面。随着超构材料的加工和制备技术以及理论数值模拟分析手段的发展,越来越多的亚波长等离激元器件得到理论上的分析和实验上的验证。和传统的,受到衍射极限限制的光学器件相比,等离激元器件在尺寸上可以达到亚波长的微纳量级。在这些器件中,对表面等离激元波起到束缚和引导作用的是各种类型的波导,例如金属纳米阵列结构,矩形槽波导,异质结构波导,V型槽波导,MIM波导等。在众多波导中,MIM波导由于更好的束缚效果,模式尺寸小,传输损耗小和易于加工等优点而得到了众人广泛的研究,理论上研究MIM波导的传输特性以及对其进行调控具有重要意义。本文设计了基于MIM波导的周期型微纳光学器件,通过数值分析的方法来讨论这些结构的电磁波传播特性。本文的主要工作和研究成果可以简单归结如下:1、首先在MIM波导中加入单个U型开口金属谐振环,研究金属开口环和波导的各参数对结构的透光性造成的影响,经过探究发现,波导的共振波长随着开口金属谐振环臂长增大而呈现红移现象;若增宽MIM波导,则波导中的共振趋于一个恒定的共振。2、在波导中再次加入一个谐振环形成一字排列双谐振环结构。经过数值分析,发现结构中两耦合共振会呈现出对称模式和反对称模式。随着两个谐振环间距逐渐增大,两个透射谷逐渐重合在一起,直至形成一个透射谷。3、将结构做成周期排列的U型金属开口环,发现周期型MIM波导的透射光谱呈现出了两个带隙,随后我们探究了波导各参数对带隙的影响:减小谐振环的排列周期可以使布拉格带隙向短波长蓝移;若增加谐振环的臂长,两个透射禁带会呈现一同向短波长蓝移的性质;增大MIM波导的宽度可以使两个带隙的宽度变窄。4、随后我们针对周期型MIM波导进行了改变,做成了一大一小双U型谐振环排列的周期结构。通过对结构的透射光谱分析,我们发现:在该结构中也出现了双带隙,局域共振带隙会随着长U型谐振环的臂长增长而向长波长红移;改变短U型谐振环的底部宽度可以使左侧带隙的线宽变宽,并使两个带隙共同出现了蓝移现象;改变波导中的空气介质宽度会使两个带隙向高频波段略微移动,同时缩短带隙宽度。5、最后设计了一种滤波器,可以通过调节竖直空气波导的位置来调节结构在1400nm波段的透光性能,也可通过改变空气波导的长度来调节该滤波器的透射极小位置。通过对以上结构的分析,希望可以对以后的二维亚波长金属微纳器件的设计提供参考。