论文部分内容阅读
本文主要研究了两个问题:图的最大亏格以及三类图的1-因子计数.
本文第一部分是关于图的最大亏格的综述.图的最大亏格问题一直以来都是图嵌入理论中的一个重要问题,本文综述了近30年来关于图的最大亏格,以及它与其他不变量之间关系的重要研究和进展,其中包括最大亏格与图的连通性,图的直径,图的染色数和图的2-因子之间的关系,最大亏格嵌入数目以及最大亏格与嵌入图等方面,并就这些方面给出了自己的一些看法.
本文第二部分研究了三类图的1-因子(又称为完美匹配)计数问题.图的1-因子计数问题是匹配理论研究中的一个重要课题.Lovasz和Plummer就曾提出关于1-因子计数的一个猜想:任意的2-边连通3-正则图都有指数多个1-因子.另外,1-因子理论在很多领域也有很强的应用背景比如物理学和化学.但是,一般图的1-因子计数问题已经被证明了是NP-困难的,所以一般考虑一些特殊图的1-因子计数.本文用划分,求和,递归的方法分别给出了三类特殊图(本文称作L2n,C(2n,2)和O3,2n-1)的1-因子数目的计算公式,从而验证了Lovasz和Plummer的猜想在这三类图上的正确性.