论文部分内容阅读
飞行器气动设计中的绝大部分问题都与非定常气动力密切相关,尤其是随着航空科学技术的发展,传统的基于静态气动力特性的理念已经不能满足先进军民用飞行器的设计需求,因而基于非定常气动力的新型综合设计方法开始得到更多的关注和应用。非定常气动力设计涉及的两个关键问题是动稳定性分析和大迎角气动力建模,前者直接影响飞行器的品质分析和飞控系统设计,后者则是评价大迎角下飞行器性能的重要途径之一。因此,开展有关动稳定性分析和大迎角非定常气动力建模的研究有着十分重要的价值和意义。然而目前的研究工作存在明显的不足之处,动稳定性分析不够精细,大迎角气动力模型的适用性差且精度不高。针对该问题,本文基于高精度的计算流体力学(CFD)方法,开展了动稳定性导数快速精细计算分析和大迎角非定常气动力模型开发等相关问题的研究。主要对复杂环境下的飞行器静、动态气动特性和相应的导数特性进行了计算分析,建立了若干新的单独/组合动导数计算方法,改进并建立了新型的基于流场物理特性的大迎角非定常气动力建模方法,并对这些新方法进行了验证分析。本文的主要研究工作如下:1)采用高精度的CFD方法,研究了复杂流场环境下的飞行器静、动态气动特性,辨识分析了其稳定性导数特性。基于多种动态网格技术,将传统的小幅度强迫谐和振荡方法分别应用于地面/水面效应、大型飞机的翼梢涡/尾喷流/螺旋桨滑流、两机编队以及考虑自身进排气效应等工况,分析了这些环境下的飞行器静、动态气动力特性,进一步辨识并且对比了其静、动导数特性与无干扰理想环境下的差异。结果表明,地面/水面对气动导数的影响趋势类似,但是由于水面具有柔性特点,两者的影响效果存在差别;大型飞机的翼梢涡对流过气流表现出剪切效应,尾喷流为加速效应,螺旋桨滑流则为更加强烈的旋转效应,尾流的存在使得后方的飞行器气动导数特性与无干扰状态差异很大,甚至发生性质上的转变;而两架飞翼无人机编队时,横向的间距对于气动导数的影响更为剧烈;进排气的动力效应影响使得飞翼式飞行器自身的动态阻尼特性有所提高。2)建立了若干新型的动导数精细化计算方法并完成了标模的验证分析工作。针对传统的动导数计算方法不够精细且效率较低的问题,开展了快速计算和精细计算两个方面的新型方法研究。使用谐波平衡法和时间谱方法进行若干样本点时刻的流场计算,基于该气动力结果重建整个非定常周期性过程并辨识动导数,从而提高传统方法的计算效率。进一步建立了升沉振荡法、旋转流场法、差分法和阶跃响应法来精细地辨识组合/单独动导数。升沉振荡法借鉴传统的组合动导数辨识方法,直接辨识时差导数,配合组合动导数结果实现单独动导数计算;旋转流场法计算对象为阻尼导数,通过圆环域将描述定常拉升运动的旋转参考系方法简化,使用定常方法辨识阻尼导数实现动导数的分离;差分法通过对同一变量不同大小值的非定常流场进行计算,使用得到的瞬时非定常气动力值插值得到组合/时差动导数;而阶跃响应法从定常计算开始,经过迎角阶跃、迎角变化率阶跃和俯仰角速度阶跃依次得到静导数、时差导数以及阻尼导数,是一种系统的方法。采用Finner、SACCON、HBS以及SDM等多个标模对这些新方法进行了验证分析。结果表明,组合/单独动导数计算值与试验或文献参考值吻合得很好,且这些新型方法均能够应用到横航向,实现多轴耦合的精细动导数计算分析。3)分析了传统的气动导数模型在小迎角和大迎角非定常气动力建模中的适用性,并对其进行了改进分析。基于静动导数计算方法得到的结果,建立了传统的气动导数模型,以NACA0015翼型为例,进行了该模型的小迎角和大迎角气动力建模适用性分析。结果显示原始模型在大迎角完全无法使用。对此,通过扩展高阶项并将气动导数表示为减速频率的多项式函数改进了原始模型,新的模型可以描述一定的非线性效应,对NACA0015大迎角非定常气动力的预测结果也较好。然而,由于该模型的建模出发点未发生改变,对于复杂模型的大迎角动态运动,尤其是运动和气动力严重耦合的情形,适用性依然很差。4)使用三角翼标模,对比分析了不同计算方法的静态大迎角计算精度,并在此基础上使用NACA0015翼型的动态运动对选择的高精度计算方法进行了对比验证。首先以70度尖前缘三角翼构型为研究对象,针对流场特点设计了空间网格分布,对比分析了包括无粘模型、层流模型、S-A一方程模型、k-?两方程模型、k-?SST两方程模型以及SAS自适应尺度模型等对大迎角流场的计算精度。结果显示,湍流模型的处理加强了涡系强度,大迎角下的气动力计算值较试验值偏大;无粘模型计算的涡系破裂过早;层流模型的结果较湍流模型好;SAS模型的计算结果和流场特性与试验值吻合最好,计算精度最高。接着使用NACA0015翼型的大迎角动态运动进一步验证分析了SAS模型,并与DES和SST模型结果进行了对比。结果表明,DES和SAS的计算值均与试验值吻合较好,且SAS模型在网格量较少的情形下能够获得更靠近试验值的结果。5)通过CFD方法详细分析了三角翼标模大迎角非定常动态气动特性的影响因素,并将其引入传统的状态空间模型,改进建立了新型的大迎角非定常气动力模型。基于高精度CFD方法,选择了基于流场内部物理特性的状态空间模型为研究对象,验证了其原始模型在大迎角动态气动力上的预测能力;针对该模型考虑的流场因素过少、适用性不强的问题,开展了影响大迎角非线性流场的特征因素分析和提取工作,将俯仰角速度、减缩频率和振幅三个量对三角翼大迎角动态运动的影响进行了深入的分析研究和评估,进一步将其引入原始模型并综合权衡,改进建立了新的基于流场物理特性的大迎角非定常气动力模型;以三角翼和F-18缩比模型对新旧模型的大迎角建模性能进行了对比验证分析,结果表明新模型具有更为广泛的应用范围和预测精度。