论文部分内容阅读
本文中我们讨论了周期位势和相互作用凸势能作用下的一类非线性耦合振子系统的动力性态.通过寻找系统的凸不变区域,我们利用单调性证明了系统在周期边界和Neumann边界条件下的Poincaré映射存在不变曲线,并且在此不变曲线上的Poincaré映射可以看作是圆周上的保向同胚.从而我们进一步讨论了平均速度的存在唯一性,第二类周期解的存在性,频率同步及Massera型定理.在Dirichlet边界条件下,我们讨论了系统所有解的有界性问题.通过时间尺度的变换,我们可以将合作系统中的结论推广到竞争系统中.
我们还研究了在欠阻尼周期边界条件下dc-驱动的Frenkel-Kontorova模型,通过强单调性我们证明了当驱动力充分大时模型的行波解的全局稳定性.