【摘 要】
:
随着移动智能终端的快速普及和物联网技术的快速发展,人们对于位置感知需求的应用急剧增加,定位服务作为移动互联网应用程序的一部分,深刻的影响着人们的出行的各个方面。近年来,随着室外定位技术的日渐成熟,总体净利率在逐年下降,而室内定位的需求却在不断增长,巨大的商业价值驱使人们更加关注室内定位技术的发展,其中,Wi-Fi(Wireless Fiedelity,无线保真)室内定位技术凭借基础设施部署广泛和终
论文部分内容阅读
随着移动智能终端的快速普及和物联网技术的快速发展,人们对于位置感知需求的应用急剧增加,定位服务作为移动互联网应用程序的一部分,深刻的影响着人们的出行的各个方面。近年来,随着室外定位技术的日渐成熟,总体净利率在逐年下降,而室内定位的需求却在不断增长,巨大的商业价值驱使人们更加关注室内定位技术的发展,其中,Wi-Fi(Wireless Fiedelity,无线保真)室内定位技术凭借基础设施部署广泛和终端设备有较高普及性的优势,成为最受关注的定位技术之一。因此,本文将研究基于Wi-Fi指纹的室内定位算法理论和系统实现,并针对定位系统在真实环境的应用过程中出现的终端差异性问题、以及定位精度低的问题,通过ELM(Extreme Learning Machine,极限学习机)算法对各定位终端差异性的校准,使得定位终端获得与训练终端一致的RSSI(Received Signal Strength Indication,接收信号强度)数据。在此基础上,融合地图匹配技术,提高定位终端的定位精度。具体的研究内容如下:(1)针对终端差异性问题,本文首先从终端硬件差异性和RSSI信号分布进行分析,研究终端差异性产生原因。然后,提出了基于ELM的终端设备差异性校准算法,以此来减小或消除各定位终端采集的RSSI值的差异性,提高Wi-Fi指纹定位系统对于不同定位终端的兼容性。最后,通过实验对比验证了算法的有效性。(2)针对定位精度问题,我们在定位终端设备校准的基础上研究Wi-Fi指纹定位算法模型,通过融合室内电子地图信息做位置估计的空间约束,提出了基于Wi-Fi指纹融合地图匹配的定位算法,利用地图匹配技术可以修正Wi-Fi定位点的偏差,从而减小定位误差,提高定位系统的定位精度。实验结果证明,与传统的定位算法相比,该算法能有效提高定位系统的定位精度。(3)综合终端设备差异性校准算法和Wi-Fi指纹融合地图匹配的定位算法的研究结果,本文在Web开发平台上搭建定位系统,首先对定位系统的功能需求进行了分析。然后,按照功能架构图,设计并实现了移动端的指纹数据采集功能,以及Web客户端的定位服务、终端用户查询服务、历史轨迹查询服务。最后,完成了该定位系统的开发和测试工作。
其他文献
在数据挖掘领域,聚类作为一种重要的数据分析方法引起广泛关注,但数据规模不断扩大,数据结构日益复杂,维数也越来越高,很难使用传统的谱聚类技术对其进行分析,子空间聚类是针对高维环境下的信息进行处理的常用方法,可以在其中准确找到与数据子集相对应的低维子空间,去除无关信息对聚类结果的干扰。现有的自适应图正则化的低秩表示方法虽然可以对数据自适应的进行学习,同时保留数据的全局和局部信息,令得到的系数矩阵具有清
随着集成电路产业的快速发展,物联网系统功耗大和电池续航时间不足的矛盾也越来越突显,成为低功耗应用开发亟需攻克的难点。太阳能电池作为绿色可再生能源中的典型代表,因其成本低、资源丰富且能量密度大而得到广泛应用。另外,负载直接连接到太阳能电池通常并不能高效率地捕获能量。能量采集器能匹配能量源的输出阻抗,使能量捕获效率最大化,达到最大功率点跟踪的目的,设计基于MPPT的能量采集器具有重要意义。本文分析了太
随着社会对智能产品依赖越来越强,其对产品的功能要求也越来越高。芯片作为产品设备中重要组成部分之一,目前主要面临着两大挑战,工艺技术无法继续往前和芯片无法兼备高性能及低功耗要求。而电压基准源作为芯片中模拟集成电路设计里的基础模块,与各个电路模块乃至电路的整体性能相辅相成,在电路中占据着重要位置。因此,设计一种高性能低功耗的电压基准源电路结构对今后的发展尤其重要。本论文设计了两种基准源电路,分别为全C
聚对苯二甲酸丁二醇酯(PBT)由于其自身优异的性能,被广泛应用于各行各业,但其回收利用率低,不符合现在低碳和环保的理念,因此研究易回收利用的高性能PBT复合材料一个非常具有研究价值的课题。类玻璃高分子(vitrimer)是一种具有动态交联网络结构的新型聚合物,在高温条件下,动态交联网络快速反应使网络的拓扑结构发生改变和重排,从而使得材料具有可重塑性和可再加工性能,这种性能使得vitrimer材料的
随着深度卷积神经网络(VGGNet、Res Net、Densenet等等)的不断发展,计算机在处理常见的粗粒度图像分类的效果已经越来越准确了,在大量的分类任务中甚至已经超过了人工的分类的精度,继而很多学者和研究人员逐渐地将研究的目光投向了细粒度图像分类任务。然而直接将这些深度神经网络用于细粒度图像的分类并不能得到很好的效果,主要是因为这些细粒度的图像之间是具有很多相同的地方,直接使用这些深度卷积神
语音是人类最基本、最重要、最快捷的信息交流传播方式。语音中不仅包含着说话者表达的内容,还包含着说话者丰富情感信息。随着大数据时代的到来,语音情感识别成为非常活跃的研究领域,在人机交互系统方面具有潜在的应用。语音情感识别作为人机交互系统的重要组成部分,其目的是通过直接的语音交流与机器形成情感互动。但是,由于情感的复杂多样性,语音情感识别是一项非常具有挑战性的工作。在语音情感识别研究中,研究主要内容是
随着经济全球化以及数字经济学的迅速崛起,推动了全球经济的快速发展。股票市场作为金融行业中最为重要的一部分,对经济的波动有着重要影响。股票价格涨跌的不确定性、难预测性和高回报高风险性,激起了众多学者的研究热潮,更受到了广大投资者的关注与追捧。如何提高股票涨跌预测的变化趋势成为众多学者与投资者最为关注的热点,因此,对金融趋势预测技术模型的研究与设计不仅具有深刻的理论意义,也具有非常重要的使用价值。由于
城市道路交通堵塞及事故的频发,给市民的交通出行和社会生产带来极大的困扰,尽管诸多的城市管理者对解决当前问题做了很多不同的尝试,但这些现象依然存在于各个城市中,且呈现上升趋势,如何在现有的交通设施基础下有效的提高城市道路的运行效率及管理能力是当前交通运输领域的主要难题。城市路网中无时无刻有网约车在运行,包含大量全面的城市交通时空信息,而且GPS数据具有可靠性高、数据量大等特点,采集到的数据通过无线网
长期以来,细粒度图像分类作为传统图像分类的一个细分方向,在现实世界的场景中有着广泛的实际应用需求。细粒度图像分类追求更加细致的类别划分,比如,输入一张鸟类的图像,可以对目标物体的具体子类别进行准确识别。显而易见的,细粒度图像分类相比传统意义上的图像分类提出了更高的要求。细粒度图像分类问题最大的挑战在于样本的类间差异小、类内差异大。为了解决这个问题,聚焦于近年来使用深度学习方法在细粒度图像分类问题上
目前人脸识别技术以及红外测温技术非常成熟,但对于人脸存在遮挡物的识别和口罩佩戴检查识别方面的应用场景,目前仍处于发展的阶段。目前在实际应用工程应用当中,面对复杂的室内外环境因素下,对人脸身份识别及配合红外非接触式测温装置的进行体温测量,仍存在一些关键技术问题,亟待科研人员和工程师共同解决:如对于人脸的关键点进行定位;判断人脸特征(如否佩戴好口罩)进行实时检测识别;在室内外进行非接触式测温精度控制和