趋化性交错扩散方程的动力学研究

来源 :湖南大学 | 被引量 : 0次 | 上传用户:z11272037
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着反应扩散方程在生态学问题中的广泛应用,学者们渐渐地发现了更多无法用随机扩散来解释的现象.例如,物种会有目的地向着资源丰富的方向移动,更有甚者,物种还会随着风向、水流等外部环境的推动而移动.基于此种考虑,学者们在反应扩散方程中引入了对流项.本文以Lotka-Volterra模型为基础,综合运用Leray-Schauder度理论、极值原理、Gagliardo-Nirenberg不等式、Lyapunov-Schmidt约化方法以及局部分岔理论等方法对几类不同反应扩散对流系统进行了详细研究.主要研究内容分为以下几个部分:首先,我们考虑了齐次Neumann边界条件下具扩散与对流影响的Leslie-Gower捕食食饵模型,对其稳态系统进行了讨论.通过运用Leray-Schauder度理论,我们得到了非常数正稳态解的存在条件.当捕食者的扩散系数与对流影响系数均趋于无穷时,原系统可化为一个在非局部条件限制下的半线性椭圆方程.在一维情形下,我们对系统非常数解的全局分岔结构进行了分类讨论.其次,我们考虑了齐次Neumann边界条件下具趋化影响的竞争系统,(?)其中系统中的参数均为正常数,信号物质的产量函数h具有一定的限制条件.我们主要从两个方面对上述系统进行了分析讨论,分别是全局经典解的存在性与有界性,以及两种不同竞争情形下全局有界经典解的长时间行为.关于解的长时间行为,我们则分别得到了在弱竞争情形下,唯一的正空间齐次稳态解具有全局吸引性的条件,以及在部分强竞争情形下,半平凡常数稳态解具有全局吸引性以及全局稳定性的条件.最后,我们考虑了齐次Neumann边界条件下具食饵趋化的更广泛的捕食食饵模型,这里广泛的意义在于捕食者能够在食饵密度为0的情形下生存.我们证明了在任意的空间维数下,当食饵趋化影响被限制在较小的范围内时,系统经典解的全局存在性及有界性.此外,通过常规的线性化分析,我们得到了常数稳态解(包括平凡稳态解、半平凡稳态解以及正常数稳态解)局部稳定性的相关结果.而对共存稳态解的分析结果说明了食饵趋化项的存在不仅会对其全局渐近稳定性产生负面影响,而且还会影响其附近稳态解/Hopf分岔的存在性及其他性质.通过运用Lyapunov-Schmidt约化方法,我们对系统的稳态解分岔、Hopf分岔以及Hopf/稳态解分岔都进行了详细的分析.特别地,我们还得到了稳定与不稳定的稳态解、时间周期解、拟周期解以及类弧面解.最后我们通过几个例子对所得到的理论结果进行了说明.
其他文献
学位
车载自组网(VANET)是一个现代通信网络技术,由于其被认为是支持未来智能交通系统(ITS)的主要技术之一,因此在不久的将来可以成为提供更安全和更高效组织的智能交通的希望。另一方面,VANET是ITS的主要应用,如协同交通监控,交通流量控制、盲人穿越马路、预防碰撞、邻近的信息服务以及实时绕行路线计算,这就需要让网络传输更安全、效率更高。VANET的另一个重要应用是提供互联网连接,每车辆都能够与附近
Domain理论是D.Scott在60年代末提出来的,它是函数式程序语言的指称语义模型.序结构和拓扑结构是Domain理论中两个重要的数学结构,一些特殊拓扑在一般偏序集上的研究中起着至关重要的作用.本文基于Domain理论的相关研究成果,讨论了s2-连续偏序集上稠密拓扑的基本性质;Scott拓扑的coherent性的充要条件;以及函数空间上Isbell拓扑和Scott拓扑一致性问题.具体内容如下:
Ramsey 理论和Turán问题是极值组合里的两大核心内容.设整数r,k≥ 2和H1,...,Hk为给定的r 一致超图.Ramsey数Rr(H1,H2,...,Hk)是最小的正整数N使得完全r 一致超图KN(r),的任意k边着色含有某个单色的Hi,其中1≤i ≤k.若H1,H2,...,Hk为完全r 一致超图时,则R(H1,H2,...,Hk)是经典的Ramsey数.目前,已知的经典的Ramse
1968年Knuth提出了置换上模式避免的概念,并借助RSK算法证明了避免π模式的广义置换的个数等于Catalan数Cn,且不依赖于π ∈ S3的选择.直到,1985年,R.Simion和F.W.Schmidt才首次系统地研究了避免三长模式的置换,并首次给出了 Knuth的结果的一个双射证明.在随后的三四十年间,模式避免的概念被广泛关注和研究,大量的研究成果被发表.2003年,在新西兰的奥塔哥大学
随着计算机硬件的飞速发展,CAE分析在工程应用中扮演的角色越来越重要。有限元法发展很快且应用广泛,但有限元法的方程是一种弱形式,要求试函数C0连续,应力求解精度不高。边界积分方程方法具有降维和计算精度高等优势。边界面法具有边界积分方程法的所有优点,直接在三维实体模型上进行离散分析计算,不对几何模型作任何的简化,从而避免了几何上的误差,是一种CAD/CAE一体化的等几何方法。边界面法的在实施过程中,
面对当今互联网的迅猛发展,高度警惕西方国家在传播模式、传播平台、传播链条和话语渗透等方面给我国网络意识形态工作带来的外部挑战,深刻认识我国网络内容、网络争论、网络水军、网络平台等方面存在的风险,通过战略、人才、技术、内容四个方面着手,打造网络意识形态现代化治理体系,提升我国网络主流意识形态的传播效果,具有重大的现实意义和战略价值。
本篇博士论文主要研究最小二乘混合广义多尺度有限元方法。旨在对于具有多尺度以及高对比扩散系数的椭圆问题,用此方法在粗网格上精确求解速度和压力。我们在减少计算成本的同时,能通过较少的多尺度基函数来达到较高的精度。我们考虑用混合法同时给出压力和速度的精确表示。这种方法常用于求解多孔介质的流体问题。由于多孔介质几何结构和多相介质分布的多尺度特性,我们考虑用多尺度模型降维的思想来更有效的求解问题。目前有很多
1937年,Stone研究了布尔代数的谱,建立了布尔代数范畴和Stone拓扑空间范畴的对偶等价.接着Stone将研究对象由布尔代数推广到分配格上,证明了分配格和格同态构成的范畴与spectral空间和spectral映射构成的范畴对偶等价.随后许多学者研究了各种序结构或者代数结构上的谱,比较著名的结论有环,分配交半格,带单位元的半格,分配并半格,有界格,分配偏序集等等.最近依然有很多结构上的谱吸引
随着国际的深度交往和利益摩擦日益增多,跨文化交流能力成为新时代外语人才必备的能力素养。新冠疫情的蔓延从各个层面改变了世界的面貌,给跨文化交流带来了严峻的挑战。本文讨论后疫情时代跨文化交流话语的新变化:文化间的交流放缓,歧视话语成为疫情的次生灾难,然而不同文化的密切联系和频繁沟通已成定势。结合授课步骤示例,本文提出在后疫情时代,跨文化交流课程的着力点应聚焦提升对刻板印象的认知,努力超越偏见和歧视,并