【摘 要】
:
从飞机采用全助力操纵系统后,操纵杆与舵面之间就没有直接联系,导致飞机操纵品质降低。为了让飞行员重新获得操纵人工感觉,研究人员在电传操纵系统中加入了被动和主动操纵杆。目前多数飞机采用了类似弹簧加载的被动侧杆系统,该类型侧杆存在的问题是:飞行员受到的杆力与飞行状态并没有太大联系。然而基于主动控制技术的侧力杆系统,其杆力可根据飞行状态实时调整,从而大大提高飞机的操纵性能,是当前飞机人感系统研究的热点。本
论文部分内容阅读
从飞机采用全助力操纵系统后,操纵杆与舵面之间就没有直接联系,导致飞机操纵品质降低。为了让飞行员重新获得操纵人工感觉,研究人员在电传操纵系统中加入了被动和主动操纵杆。目前多数飞机采用了类似弹簧加载的被动侧杆系统,该类型侧杆存在的问题是:飞行员受到的杆力与飞行状态并没有太大联系。然而基于主动控制技术的侧力杆系统,其杆力可根据飞行状态实时调整,从而大大提高飞机的操纵性能,是当前飞机人感系统研究的热点。本文围绕主动侧力杆控制系统的设计开展相应的研究工作。本文首先结合侧杆装置传动机构,建立了操纵者单通道推杆模型。对该模型进行理论分析,得出哪些因素会影响侧杆系统静态和动态的性能。在此基础上以侧杆装置的俯仰轴为例对其进行动力学分析以及质量等效处理。同时考虑侧力杆系统涉及人机交互,不仅需要模拟驾驶员操纵力与操纵面位置之间的动态关系,而且需要给驾驶员较好的“人工感觉”。因此根据主动侧杆系统工作特点,提出了基于速度控制的阻抗控制策略。然后,基于操纵者单通道推杆模型,分析了人手推杆动态过程。将其等效为推小车的二阶系统,得出人手推杆的模型。同时,利用伺服驱动器的调谐数据,在MATLAB中辨识出了侧杆机构的机械传函,并与推导的动力学模型进行对比分析。将人手推杆模型、基于速度阻抗控制器、动力学模型,设计出了主动侧杆控制系统,并在Simulink中搭建侧杆控制系统仿真模型。最后,针对实际侧杆控制系统中动态响应速度与抗扰性能之间存在矛盾关系,在阻抗控制的基础上,提出基于杆力误差的自适应补偿器,并采用了模型参考自适应来设计自适应律。实际测试结果表明,自适应补偿的阻抗控制器在不降低抗扰性能的同时提高了系统的跟随性能。在实际侧杆装置进行了多组实验,通过对实验数据的分析,表明本文研究的控制方案满足主动侧力杆的指标要求。因此,验证了文中基于速度控制的阻抗控制方案的有效性。
其他文献
在控制和机器人技术研究领域,我们经常面临具有挑战性的决策问题:数据稀有或是过程复杂且部分未知。在这些情况下,设计一种能够从数据中学习并用于决策的算法具有很大的意义。强化学习(RL)是基于经验、目标导向的通用计算方法,可用于不确定下的决策问题。但是,在没有特定的工程知识的情况下,RL通常需要与环境交互多次,即缺乏交互效率。因此,针对数据稀缺(较少交互)的控制决策问题,本文研究了基于模型的强化学习,提
湿喷机械臂作为典型的隧道工程机械,其在铁路、公路等基础设施建设中发挥着不可替代的作用。为解决人工湿喷作业的作业环境恶劣、人身安全受到威胁以及作业质量难以保障等问题,本课题通过研究湿喷机械臂自动化作业策略及规划方法以实现湿喷机械臂自动化作业。本课题针对如何从隧道点云数据中获取自动化湿喷作业所需信息进行了深入的研究。通过对比三种常用的点云体积计算方法,结合本课题研究对象的特点确定了以2.5D生长法作为
由于残疾、老龄化、交通事故等原因引发的下肢功能障碍,严重影响患者的身心健康。传统康复治疗由康复师辅助患者活动下肢,训练任务繁重,康复师数量不足;亟需一种康复器械,代替康复师对患者进行下肢训练指导,帮助患者完成重复繁琐的康复训练。市面上的下肢康复器械大多是以踏车运动为蓝板设计的末端牵引装置,只能实现固定圆周运动,轨迹单一。而正常人体步态更加接近于椭圆形状,长期使用与正常人体步行参数有些许差别的圆轨迹
同时定位与建图(SLAM)是移动机器人感知的关键技术,机器人通过搭载相机或激光雷达感知周围环境,对自身进行定位并构建出环境地图用于导航与路径规划。本课题主要针对室内动态场景中使用RGB-D相机作为感知系统的移动机器人,解决视觉SLAM算法在动态环境中定位精度低、特征点追踪稳定弱以及稠密建图等问题。首先,为判定图像中动态物体的位置,本文设计了基于极线约束与语义分割的动态物体检测算法。动态物体检测算法
近年来,航天工业在社会进步的推动下迅速成长起来,卫星的发射量也大幅度增长,卫星装配环节作为卫星生产进程中非常重要的一步,必须不断升级改造以适应卫星日益增长的需求量。本文拟面向卫星装配环节,研究设计一套柔性装夹支撑系统,满足用户给出的装配功能和指标要求,在保证卫星装配的高精度前提下快速完成卫星零件的装夹支撑功能,提高装配的快速性及可靠性。本文首先给出柔性装夹支撑系统的整体设计方案,按照功能区域将系统
在“中国制造2025”五大工程的指导下,要求制造业向智能化、数字化、柔性化不断推进发展,多品种小批量的生产模式逐渐成为主流。但是目前多数企业的车间仍采用传统固定低效的方式布局车间,布局的柔性低、物流成本高、搬运时间长,设备利用率低等问题。多品种小批量机加车间作为装备制造企业的一个生产单位,研究其柔性布局方式很有必要。本文以某多品种小批量机加车间为研究对象,为实现机加车间的柔性布局设计展开了以下研究
在飞行器设计中,以往的机体与发动机分离的设计方案已经不能满足现有的设计要求,因为在飞行器的飞行过程中,飞行姿态的变化会影响发动机的来流从而影响进气,发动机产生推力力矩同样会对飞行器的姿态产生影响,飞控系统和推进系统之间的耦合问题已经不能忽视。因此,本文以BTT(Bank to turn倾斜转弯)飞行器为研究对象,在飞行/推进系统一体化控制的条件下,设计了鲁棒控制算法,以求实现对飞控系统以及推进系统
在生产线上,传统的上料机构占地面积大,噪声多,且需要工人参与,随着工业智能化的发展,传统的上料方式已经不满足自动化的需求。现阶段智能化工厂大多数采用二维相机引导的方式,无法对相互遮挡的堆叠物体进行良好的识别,准确率与泛化能力较低。为解决上述问题,本文针对不同长径比散乱堆叠的棒料,构建一个基于三维点云的视觉识别系统,重点研究位姿识别技术,实现了上料系统的智能化。本文首先分析了不同长径比的棒料的堆叠特
随着越来越多的以卫星为载体在太空中进行的测量任务,无拖曳控制的应用越来越普遍,而针对目前正在大力推进的引力波探测任务来说,对无拖曳控制的精度要求进一步提升。在地球的高轨道上,微牛级的推力噪声和太阳光压的扰动作用成为了影响探测精度的主要原因之一。推力器类别不同,产生的推力噪声机理也不尽相同,本文以实际采集的微牛级会切霍尔推力器推力噪声数据为主要扰动模型,采用基于高增益观测器的反馈控制的控制方法进行无
机器人一直是科研的热门领域,软体机器人由于其高柔性、高适应性、高安全性使其在很多家政服务、助病助残、农业医疗等方面高度匹配,因此,越来越多的学者将研究转移到软体机器人领域。但是,软体机械手不像硬体手拥有较完善的控制策略,开发出更加完善适合软体手的自主控制策略和理论亟待解决,因此对于软体机械手抓取技术的探索和研究很有必要。在对目标的检测和定位,检测工业产品,导航控制机器人等领域都有机器视觉的身影,它