移动机器人智能监控与应急救援关键技术研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:sunweidong123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
视频监控是安防及应急救援的重要组成部分,因其呈现方式直观、传递信息多元而广泛应用于各类场景之中。传统方法的视频监控主要存在三大问题,其一是缺少视频智能分析,在监控过程中需要依靠人工同时对多个摄像头所拍摄的监控画面进行较长时间的观察,而且仅能对监控内容给出主观的判断,使得工作效率较低。其二是缺乏灵活监控,大多数的摄像头采用固定安装的方式,易存在监控盲区,同时极易受限于光照的变化,在更为重要的低照度或黑暗场景下不具备良好的监控能力,且若大量布置或是升级硬件会使成本较高。其三是视频监控与应急救援无法快速响应并进行高效的联动作业。针对以上问题,本文主要研究工作有以下三点:针对现有视频监控易受限于真实环境中的光照变化的问题,重点研究了低照度情况下的视频监控区域入侵检测。设计了视频监控画面的亮度评估及低照度情况下的图像亮度增强方法,解决了在低照度情况下图像过暗、目标不清的问题,优化了在低照度情况下的前景分割算法,有效消减阴影的干扰,提高对入侵目标轮廓提取的准确性。同时提出了全画面及区域划定两种区域入侵方法,在利用几何关系判定的基础上引入评估入侵程度的参数,提高判定效率与准确率,结合方向梯度直方图特征提取方法,实现准确高效的入侵目标检测。针对固定摄像头监控画面覆盖不全,易存在监控盲区且大量布置会导致成本较高的问题,本文基于移动机器人平台设计了远程控制精准巡逻的探测方法。运用基于激光雷达的地图构建及路径规划算法,实现了远程控制地面移动机器人精准巡逻快速联动。同时利用深度学习实现了黑暗环境下红外视频图像的行人检测,弥补监控视角盲区。为实现视频监控与应急救援间的快速联动,本文基于浏览器和服务器架构设计了智能视频监控与应急救援软件平台,实现了事故报警、应急救援联动以及事故信息整合等功能。构建了快速响应的视频监控与应急救援联动机制,在提升监控效率的同时提高事故处理的灵活性。
其他文献
传统的机械手路径规划方法通常需要建立精确的数学模型,只能用于固定的任务环境,缺乏泛化能力。近年来,深度强化学习(Deep Reinforcement Learning,DRL)在机器人博弈等领域取得了突破性的进展,研究人员开始探索将DRL应用于机械手控制的可行性。另外,虽然DRL在单智能体环境下的研究逐渐趋于成熟,但在多智能体场景中仍然有较大的发展空间。与单智能体环境相比,多智能体环境最大的不稳定
为了适应日益增长的三维动画、游戏、虚拟现实、医学图像重建和文物保护等领域的建模需求,针对自动三维重建方法的研究日趋活跃。本文以基于多传感器信息的三维重建算法为研究课题,重点研究了基于单目或多目彩色图像的三维对象重建算法以及基于深度信息的三维场景检索算法。由于传统算法需要大量的图像数据作为输入,且在运行速度上还不能令人满意,因此随着深度学习技术的快速发展,越来越多的研究人员开始尝试使用深度神经网络来
随着硬件水平的不断提升与相关研究的持续推进,图像融合技术在各个领域的应用都在不断深入发展。同时,随着计算机算力水平的不断提升,卷积神经网络理论也在迅猛发展,已经被广泛应用于目标识别、人脸识别等多个领域。一方面,引入卷积神经网络可以改进图像融合中的特征提取与分配环节,在此条件下重新设计的图像融合框架可以提升融合图的融合质量。另一方面,现有的相关论文鲜有基于卷积神经网络设计的三通道或多通道的图像融合模
边缘计算拥有低时延和高安全等诸多优点,边缘计算可以看作“微云”,相比云来说其本身的计算资源、存储资源都更受到局限。在边缘设备上会有多种异构终端接入、异构数据存储且多种应用运行其上,边缘设备提供安全的支持系统是边缘设备安全的基础。Docker是基于“沙箱机制”的一种轻量级容器引擎,将底层文件、镜像和应用程序等统一打包的虚拟化技术其具有统一的标准化打包流程、强大的可移植性和隔离各个应用的安全性等优点,
随着人机交互技术的不断发展,Web应用服务性能与用户体验已经成为衡量Web应用运行质量的重要因素。用户体验评价方面,除了渲染时延这一常规指标以外,因用户因体验不佳而产生的异常行为也是重要的评价参考,而Web应用服务性能评价指标则通常包括云端服务响应请求的平均速率、稳定程度以及渲染端解析服务器响应资源的效率。用户在访问Web应用时产生的用户行为与Web应用服务性能之间的关系密不可分。例如:当请求服务
调制解调是信号检测和信号解调之间的关键技术,在非合作通信中起着至关重要的作用。调制识别技术在民用和军事领域都应用广泛,怎样在实际通信传输过程中,实现对接收信号调制方式的准确识别,是目前在调制识别技术当中迫切需要解决的难题。本文针对传统调制识别方法中所存在泛化能力弱、鲁棒性差等缺点,将深度学习应用到调制识别领域,并选用了模型更小的轻量级神经网络作为识别模型,提升了准确率的同时极大地减少了计算量,本文
石油是维持现代社会正常运转的重要能源之一,石油开采过程中一旦发生泄露,将会造成严重的生态灾害和巨大的资源损失。近年来视频监控技术在油田安全巡检中引起广泛的关注,由于视频监控图像具有直观方便的特点,在石油安全巡检中引入计算机视觉技术进行在线监控,及时发现油田采油作业过程中可能出现的故障,可以节省人力资源的消耗并保障安全巡检的质量和效率。传统的漏油检测采用LDR(Low Dynamic Range I
近些年来,运动捕捉技术在多个领域获得了越来越广泛地应用。基于惯性测量的运动捕捉系统相较于其他运动捕捉设备,成本低廉、使用方便、稳定性强,具有很高的研究价值。本文基于惯性测量技术设计研究了一种价格低廉、实时性良好的人体运动捕捉系统。本文的主要研究工作具体如下:1.分析了人体姿态跟踪系统的具体需求,并根据使用需求给出了系统的整体设计框架,完成了系统的硬件选型与制作以及上位机的软件选取。2.对三种传感器
缺陷检测是常见且重要的工业场景,由于待检测产品及其缺陷的多样性,传统的机器学习算法在可复用性上表现不佳。卷积神经网络以其强适应性和转换简单等优点在缺陷检测领域得到了迅速而广泛的运用。然而,由于图像表面众多像素级的缺陷特征的提取非常困难,即使特征金字塔可以针对小缺陷特征进行提取,而不同尺度特征图耦合时会损失大部分微小缺陷的特征,使得大背景下微小缺陷检测存在困难,性能难以提升,成为缺陷检测领域研究的热
随着人们生活水平的提高,居民私家车的数量在最近几十年急速增长,这使得人们对于出行需求逐渐由公共交通转为更加快捷舒适的私家打车出行,但是有限的道路与能源资源却不能无限满足私家车数量与人们对打车需求量的增长。另一方面,随着打车出行人数的增加,传统的“一人一车”的服务方式运营效率非常低下,使得车辆座位利用率极低,但是使用频率却越来越高,越来越不能满足大多数人的出行需求。近几年兴起的“共享经济”使得合乘出