【摘 要】
:
随着社会的不断发展和进步,人类集体性的活动日益频繁,聚集的场所也越来越多,准确估计人群密度和数量可以为预判人群活动提供非常有效的信息,有利于保障社会公共安全。人群计数已成为当下计算机视觉领域方面的一项研究热点。早期的人群计数方法主要以检测和回归为基础,近年来,深度学习凭借其在特征学习方面卓越的能力吸引了越来越多的研究者。鉴于深度学习方法在人群计数方面比传统方法的计数精确度更高,本文采用基于深度学习
论文部分内容阅读
随着社会的不断发展和进步,人类集体性的活动日益频繁,聚集的场所也越来越多,准确估计人群密度和数量可以为预判人群活动提供非常有效的信息,有利于保障社会公共安全。人群计数已成为当下计算机视觉领域方面的一项研究热点。早期的人群计数方法主要以检测和回归为基础,近年来,深度学习凭借其在特征学习方面卓越的能力吸引了越来越多的研究者。鉴于深度学习方法在人群计数方面比传统方法的计数精确度更高,本文采用基于深度学习的方法实现密集人群计数。主要工作如下所述:1)提出了一种由像素级注意力机制和改进的单列人群密度估计网络两部分组成的高密度人群计数方法。该方法针对人群分布不均和网络学习参数众多问题,首先利用全卷积神经网络对人群图像进行像素级分类,然后采用改进的单列卷积神经网络实现对人群密度的估计,从而回归得到总人数。提出的方法在Shanghai Tech、UCF_CC_50以及World Expo’10这三个公开且流行的人群计数数据集上进行了实验,与当下主流人群计数算法相比,本文提出的方法在人群密度估计方面具有更好的性能。2)提出了一种基于生成式对抗网络结构的人群计数方法。该方法采用U-net神经网络作为生成模型,通过编码-解码的方式生成人群密度图。该方法还针对图像的两种输入方式(原始图和图像小块)设计了对比实验;在判别模型中引入了空洞卷积,并在Shanghai Tech_part A子数据集上进行了实验。结果表明采用图像块输入方式的生成网络与引入空洞卷积的判别网络得到的模型与对比方法相比性能最优。
其他文献
本文是以C形龙门三平动并联机构和C-A型双摆头构成的五轴联动混联机床为研究对象,针对该机床的运动学分析、轨迹插补、速度控制及冗余滑块位置规划等关键技术进行了重点研究。主要内容如下:首先进行了机床运动学分析。根据五轴联动混联机床的结构特点和运动关系,推导出机床的位置反解方程、位置正解表达式、并联机构的速度逆雅克比矩阵及加速度映射关系,简单解释了机构正解的多解性及定解方法。其次,针对混联机床的运动关系
本文以定深电液伺服控制系统的应用为背景,以优化系统在复杂工作环境下的稳定性为目标,重点针对定深电液伺服系统内部参数的摄动、不确定性,以及控制系统对外部负载扰动的抗干扰性问题,开展了基于神经网络的PID控制策略以及滑模变结构控制策略研究。本文首先分析了定深电液伺服系统的结构及工作原理,对其中重要的机械元件进行选型介绍。在此基础上分析了系统的动态特性并构建其数学模型。此外还将对定深电液伺服系统控制性能
随着空中和地面移动机器人的深入研究,促进了具有多种运动能力的多栖机器人的发展。陆空两栖机器人作为多栖机器人的一个重要分支具有空中和地面两种运动能力。陆空两栖机器人自主运动时,需要为机器人规划出一条从起点到目标点无碰撞的三维路径。同时在运动过程中,陆空两栖机器人需要根据当前的环境信息自主决策选择较优的运动模式。因此,以复杂环境下陆空两栖机器人为研究对象,开展了针对环境建模、路径规划算法以及切换决策算
目前,虚拟演播室已经成为当下节目制作的主流技术,而摄影机器人作为虚拟演播室的主要组成部分之一,也成为了机器人项目中的热门研究对象。本文针对虚拟演播室摄影机器人进行研究,对摄影机器人进行了结构设计、仿真分析、实验优化等方面的研究。在结构设计方面,根据设计方案对摄影机器人各个关键部件进行设计。针对电控云台的设计要求,完成了云台的结构设计,并进行了内部减速器的设计及选型;基于平行四边形原理对摇臂部件进行
磁电复合材料作为一种新型智能材料,具备磁电转换能力,能够直接感知外部磁场,在磁电传感器与换能器领域具有广阔的应用前景。非晶态磁致伸缩合金在数十奥斯特的磁场作用下就会发生饱和磁化,产生非线性磁致伸缩效应,从而非晶态合金/压电复合材料在较高幅度的激励磁场作用下产生非线性磁电效应。现有研究表明:通过解调奇次谐波输出,可实现静态/低频动态磁场的测量,且无需另外施加偏置磁场。本文从理论和实验两个方面对非晶态
本课题来源于企事业委托项目,负责研发虚拟演播室摄影机器人的视觉模块,主要实现摄影机器人对目标主持人的识别与跟踪的系统开发,其核心模块主要有人脸识别模块、深度定位模块与目标跟踪模块。本文首先对虚拟演播室下摄影机器人的工作空间需求进行分析,提出了一种轨道式摄影机器人,并对其结构与控制系统进行了详细介绍。本文对该摄影机器人进行了运动学分析,并对其进行了逆运动学求解。虚拟演播室下,除主持人固定外,其他嘉宾
滚珠丝杠副作为数控机床的核心传动部件,其性能直接影响数控机床的定位与传动精度。经过多年可靠性工程的研究,国内滚珠丝杠副的综合性能已经获得了极大的提升。而作为可靠性工程的重要组成部分,滚珠丝杠副的可靠性增长承担着设计加工优化改良,现场使用规范操作的任务,而目前对这方面还鲜有研究。本文依托国家科技重大专项,旨在建立与验证一个适用于不同型号丝杠的可靠性增长体系与评估方法。本文首先建立了滚珠丝杠副可靠性增
随着摄像头的不断更新换代,图像的分辨率越来越高,所占空间也越来越大,为图像的存储和传输带来了巨大的挑战。除了考虑增加存储空间、升级带宽外,还应该从图像本身出发,研究图像压缩技术,在保证图像质量的情况下,尽量减少存储空间。基于深度学习的图像压缩方法近几年发展迅速,其中基于卷积神经网络的方法已经成为主流的压缩方法。该类方法主要分为四部分:编码器、量化器、熵编码器以及解码器。编码器采用卷积层提取图像特征
近年来,如何解决标记多义性问题已成为机器学习和数据挖掘领域的一个热门研究点。在传统的机器学习框架中,比较成熟的标记多义性学习范式是单标记学习和多标记学习。前者假设一个示例仅仅只有一个标记,后者认为一个示例可以和多个标记相关。因此,相比于单标记学习,多标记学习可以解决更多的标记多义性问题。然而,无论是单标记学习还是多标记学习都只能解决“哪些标记与示例相关”的问题,无法回答“每个标记是怎样对示例进行描
车联网是物联网在智能交通领域的运用,也是智能交通系统的重要组成部分。车联网本质上是一个庞大的无线传感器网络,其中路边节点与车辆之间能够进行无线通信,从而实时感知车辆位置,并与车辆进行数据交互。为了保证车辆与网络的实时通信,车联网需要具备高精度目标追踪能力。然而,当前主要追踪方法依靠的是全球定位系统等传统技术,不具备足够的追踪精度,且易受到天气与建筑因素影响。本文基于车联网中目标追踪场景,设计了三种