论文部分内容阅读
在经典的概率论框架下,正交投影定理告诉我们被估计变量的条件期望就是关于它最小均方估计问题的最优解。正是基于正交投影定理,Kalman[47],Kalman和Bucy[46]首次完整地给出了线性高斯系统下的滤波方程,从而奠定了现代滤波理论的基础。此外,Bensoussan[8],Liptser和Shiryeav[51]等进一步完整地介绍和推广了 Kalman-Bucy滤波的理论结果。因此,正是基于如此完整的滤波理论体系,在不同领域中一系列部分观测(或部分信息)下随机最优控制问题才能得以解决。进一步地,如果我们将期望算子替换为次线性算子或者凸算子,那么此时我们应该如何得到次线性算子(或凸算子)下的最小二乘估计问题的最优解,并且该最优解是否仍然与条件一致风险测度和条件g-期望保持一致?这是个很有意义的问题。最近,Sun和Ji[74]研究了次线性算子下有界随机变量的最小均方估计问题。但是,这个结果限定在有界空间,在应用中有一定的局限性。因此,我们将这个结果推广到了可积空间,从而探讨随机领域中的问题。本文主要研究了次线性算子和凸算子下最小均方估计问题、次线性算子下状态方程带模糊的Kalman-Bucy滤波问题和观测方程带模糊的Kalman-Bucy滤波问题、凸算子下系统带模糊的Kalman-Bucy滤波问题。本文分为六章,其中第一章为研究背景和预备知识,第二章到第六章的研究内容概括如下。论文的第二章:本章主要研究了次线性算子下非有界随机变量的最小均方估计问题。在温和的假设条件下,我们得到了非有界随机变量的最小均方估计元的存在性和唯一性定理和最小均方估计元的一些基本的性质。并且给出三个例子说明最小均方估计元不同于条件一致风险测度和条件g-期望。本章的创新点在于删除了 Sun和Ji[74]中有界性的假设,提出一种新的证明思路解决次线性算子下可积随机变量的最小均方估计问题,并且得到可积随机变量的最小均方估计元的存在性和唯一性定理,同时也给出了最小均方估计元的一些性质。论文的第三章:本章主要研究了一个模型不确定性下广义的Kalman-Bucy滤波模型和相应的稳健估计问题,其中模糊参数θ主要影响到状态方程。我们发现这个稳健估计问题可以等价地看作是一个次线性算子下的估计问题。由Girsanov变换和最小最大值定理,我们证明这个稳健估计问题可以被重新构造成一个在新的概率测度下的Kalman-Bucy滤波问题。在本章中我们得到了最优估计元的滤波方程。此外,在特殊的条件下,我们证明了该最优估计元可以被分为两部分,其中一部分是经典情况下的滤波方程,另外一部分包含了最优的模糊参数θ*。这个结果有助于解释模糊参数是如何影响最优估计元的演变。本章的创新点在于将漂移项模糊引入经典的Kalman-Bucy模型中,那么相应的估计问题(?)就变为一个稳健估计问题(?)。根据证明的定理3.1,我们找到最优的模糊参数θast,这有助于我们将问题(?)中的两个非线性元素sup inf退化为一个非线性元素inf,并最终得到最优估计元x满足的滤波方程。论文的第四章:本章主要考虑了一个模型不确定性下的广义的Kalman-Bucy滤波模型和与之对应的稳健估计问题。在本章中,模型不确定参数θ主要影响到观测方程。我们之所以这么构建模型主要是基于Ji,Li和Miao[37]所考虑的一个动态合约问题,在他x所考虑的模型中,一个项目的可以被观测到的累计产出方程中含有不确定参数a和η。对模型更直观的解释为:不同的观测者对信号过程的衡量标准是不同的。这样就会导致模型不确定性。因此,我们考虑这个广义的Kalman-Bucy滤波模型是有意义的。我们同样是将该稳健估计问题等价的看作是在一个次线性算子下的估计问题,转而求解这样一个次线性算子下的最小均方估计问题并得到最优估计元的刻画方程。同样地,在特殊条件下,该最优估计元可以被分解为两部分,其中一部分是经典情况下的滤波方程,另外一部分包含了最优的模糊参数θ*。这个结果有助于解释模糊参数是如何影响最优估计元的演变。论文的第五章:在第五章,我们研究了凸算子下有界随机变量的最小均方估计元的存在性和唯一性的问题。本章的创新点在于考虑到次线性算子应用的局限性,我们将次线性算子下的最小均方估计元的理论推广到凸算子下。由于凸算子缺少正齐次性,因此这就导致凸算子的表达式相较于次线性算子会多出一个惩罚项。本章的内容区别于Sun和Ji[74]的主要地方在于如何处理这个惩罚项。最终我们得到凸算子下有界随机变量的最小均方估计元的存在性和唯一性定理以及最小均方估计元的性质。论文的第六章:本章的一个创新点在于将倒向随机微分方程的相关理论和Kalman-Bucy滤波理论相结合,将经典的滤波问题推广为一个关于信号过程的稳健估计问题,该问题也可以看作是在一个凸算子下的最小均方估计问题,我们最终得到了信号过程的最小均方估计元满足的微分方程(即滤波方程)。此外,在上一章中,我们研究了凸算子下有界随机变量的最小均方估计元的存在性和唯一性的问题。在本章中,另一个创新点在于我们将相应的存在性和唯一性结果推广到可积空间中,即得到了凸算子下可积随机变量的条件期望的定义。由于凸算子缺少正齐次性,因此这就导致凸算子的表示相较于次线性算子会多出一个惩罚项。本章的内容区别于第一章的主要地方在于如何处理这个惩罚项。论文的第七章:在本章中,我们在随机控制的角度下重新构建了第三章中的稳健估计问题,使之变成一个零和的正倒向随机微分博弈问题。其中代价泛函定义为:J(a,b-,θ)=E[Y(a,b;θ)(0)]=Y(a,b;θ)(0),(1)状态变量(ζ(.),Y(.))满足:其中K(t)是一致有界的,确定性的函数,(a(t),b(t);θ(t))是控制变量。令AZ(1)={(a,b)|a(t)和b(t)是Zt-可测的过程并且属于LZt2(0,T;Rn)和LZt2(0,T;Rn×m)},A(2)={θ|θ(t)是Ft-可测的过程使得|θ(t)|θ(t)| ≤ μ}.定义0.1.如果(a,b;θ)∈AZ(1)× AF(2),那么我们称控制变量(a,b;θ)是允许的。定义哈密顿函数H(t,ζ,Y,Z1,Z2,a,b,θ,l,n2,λ)H(t,ζ,Y,Z1,Z2,a,b,θ,l,n2,λ)=l(t)(a(t)+b(t)G(t)∈(t))+λ(t)(-θ(t)Z1(t)(3)-K(t)(x(t)-ζ(t))2)+b(t)n2(t),和伴随方程:应用凸变分的技术,我们得到如下最大值原理:定理0.1.令假设4成立。假设(a(.),b(.);θ(.))是问题(1)的一个鞍点,并且(ζ(.),Y(.),Z1(·),Z2(·))是相应的状态轨迹。那么,我们有E[Ha(t,ζ,Y,Z1,Z2,a,b,θ,l,n2,λ)|Zt]=0,E[Hb(t,ζ,Y,Z1,Z2,a,b,θ,l,n2,λ)|Zt]=0,(6)E[Hθ(t,ζ,Y,Z1,Z2,a,b,θ,l,n2,λ)|Ft]=0其中(l(.),n1(·),n2(.))和λ(.)是伴随方程(4)-(5)的解。