多目标优化的最优性条件及对偶

来源 :重庆师范大学 | 被引量 : 0次 | 上传用户:aaalxf
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
广义凸性在数学规划与最优化理论中具有十分重要的作用。它们在一定程度上保留了凸函数的一些优秀性质,是凸函数的拓广与发展。目前,许多学者已经研究了各类广义凸性的条件下各类优化问题的最优性条件,对偶理论等。本文主要研究了高阶K伪凸性,高阶Q拟凸性和高阶Q凸性以及在高阶K伪凸性,高阶Q拟凸性和高阶Q凸性假设条件下多目标优化问题的最优性条件,对偶理论等。主要内容包括:第一章:介绍了研究的理论意义,应用意义及广义凸性的一些研究进展。第二章:Bhatia在文献[17]中介绍了高阶锥凸,高阶(强)锥伪凸和高阶拟凸,在目标函数是高阶K凸、约束函数为高阶Q凸的条件下,给出了弱极小、极小的充分性条件。本文在其研究的基础上,第一:减弱了目标函数凸性条件,在目标函数是高阶K伪凸、约束函数为高阶Q凸的条件下,给出了弱极小、极小的充分性条件;第二:减弱了目标函数凸性条件,在目标函数是高阶K伪凸、约束函数为高阶Q拟凸的条件下,给出了弱极小、极小的充分性条件。第三章:Bhatia在文献[17]中介绍了高阶锥凸,高阶(强)锥伪凸和高阶拟凸,在目标函数是高阶K凸、约束函数为高阶Q凸的条件下,建立了高阶对偶模型,得到了(VP)和(HD)的弱对偶、强对偶定理。本文在其研究的基础上,第一:减弱了目标函数凸性条件,改变了约束函数的凸性,在目标函数是高阶K伪凸、约束函数为高阶Q凸的条件下,建立了高阶对偶模型,得到了(VP)和(HD)的弱对偶、强对偶定理;第二:减弱了目标函数凸性条件,改变了约束函数的凸性,在目标函数是高阶K伪凸、约束函数为高阶Q拟凸的条件下,建立了高阶对偶模型,得到了(VP)和(HD)的弱对偶、强对偶定理。第四章:对全文进行了总结,并提出了一些可以进一步开展研究工作的思路。全文的创新之处主要体现在第二章和第三章。
其他文献
随着国际贸易日趋频繁,世界重要集装箱码头的吞吐量不断增加,自动化集装箱码头应运而生。自动化集装箱码头使用自动化设备不仅能够节约人力成本,而且标准化的操作方式和信息传输有助于优化管理。由于自动化码头设备与传统码头设备的运行方式有较大差异,因此需建立基于自动化码头设备的模型评估其效率。而堆场是集装箱码头重要的资源,箱位分配决定了堆场的利用率。进口集装箱箱位分配问题受制于未来取箱时间的不确定性,相关研究
随着工业化进程的发展,有机物肆意排放所造成的水污染问题已经给人类的生活环境和身体健康带来了潜在的危害,并且由于污染物种类繁多,传统的水污染治理方式已经不能高效、环保地对污染物进行干预和控制。因此我们将研究的重点转向异相光芬顿这一降解手段,即利用光催化剂在光照条件下能够产生电子-空穴对这一特性,分别与过氧化氢和氧气反应生成强氧化性的物质——羟基自由基和超氧阴离子,进一步降解有机污染物,生成二氧化碳和
面对由交通摄像机组成的超大规模城市传感器网络,实现对车流信息的高效、联动处理是智能交通系统(Intelligent Transport System,ITS)建设的迫切需求,极大地推动了多目标多摄像机(Multi-Target Multi-Camera,MTMC)跟踪技术的发展。本文针对城市多路口的复杂交通环境,建立了基于时间与空间信息的摄像机链路模型,重建车辆的行驶路径,提出了从端到端,即由原始
在新型工业化和城市化进程加速发展的背景下,环境污染、资源干涸、居住环境变差等问题成为了城市居民所关注的热点,而城市的生态宜居性作为反映城市生态环境的重要指标,其优劣程度也越来越受到人们的重视。然而,影响城市生态宜居性的因素众多,且评价方式与评价体系多种多样,其方法各有优劣,目前仍没有完整统一的标准体系来对城市的生态环境做出评价。由于互联网技术的快速发展,使得数据资源的获得不再艰难,大数据技术已被广
为了积极应对世界经济增长引起的对海上集装箱运输运力的挑战,集装箱码头运营商需要致力于提升码头运营效率,规范作业流程,坚持推进单证无纸化和设备自动化。因此,研究自动化集装箱码头与传统集装箱码头在布局和优化方向上的差异,有利于帮助码头经营方全方面的审视自动化会给集装箱航运业带来的好处,以及在转型升级过程中需要注意的地方。但目前无论是对于自动化集装箱码头新的布局还是进口集装箱预倒箱问题的研究都很少,随着
近年来我国经济快速发展,对外贸易越来越频繁,国际货物运输业务逐年增加,与此同时,我国沿海各大港口城市也在不断建设港口基础设施来应对进出口货物的快速增长。在整个海洋运输体系中,集装箱运输发挥着重要的作用。集装箱运输因其易中转、安全且可以简化作业手续等诸多优点,在海洋货物运输中占据了较大的比重。面对逐年增长的集装箱货物量,港口应该充分利用资源,提高集装箱作业效率,为到达船舶提供更高效的服务。提高港口集
在数学规划中,我们往往会遇到很多大规模问题,解决这些问题的方法主要有共轭梯度法、有限记忆BFGS方法和可分化方法等.可分方法是将复杂的大规模优化问题分解成多个子问题进行求解.由于一些可分化方法中的主问题或子问题是非光滑的或其最优解不满足KKT条件,而这两个条件对构造的算法影响是非常大的。为了避免这些问题的产生,学者们提出了用增广拉格朗日函数松弛方法来求解问题,并且将两种可分化技术—交替方向分解法和
全局最优化是一门应用性非常广泛的学科.在现实生活中,大量的自然科学与社会科学中的问题都可以归结为一个全局优化问题,全局最优化广泛应用于金融,经济模型,网络交通,图像处理,分子生物学,化学工程设计及控制,环境工程学等等.当全局最优化问题中存在多个不同于全局极小点的局部极小点时,经典的求解线性规划问题的技术不能成功地应用到非线性全局优化问题中.而且,还缺少一个很好的判定准则来判定一个局部极小点是否为全
在生物种群动力学中,学者们广泛关注具有功能性反应的捕食系统。近期,一些具有Holling功能性反应的捕食系统得到了广泛关注。可随机扰动下的比率的Holling功能性反应的捕食者-食饵系统研究不多,因此,进一步研究基于比率依赖和具有随机扰动下的Holling-(n+1)功能反应的捕食系统的模型是有意义的。本文将要研究具有比率和随机扰动下的Holling-(n+1)功能性反应的捕食者-食饵系统的一些相
不动点理论是非线性泛函分析理论的重要内容,近年来,对渐近非扩张非自映像的研究增多,但是对渐近非扩张非自映像两种定义的研究及有限个渐近非扩张非自映像的研究还没有多少。故本文在C. E. Chidume、H.Y. Zhou、向长合等作者已得出的渐近非扩张映像不动点逼近结果基础上,研究渐近非扩张非自映像的两种定义及有限个渐近非扩张非自映像的公共不动点逼近问题。文章分析了渐近非扩张非自映像的两种定义之间的