双流制电力机车直流制式下牵引变压器铁芯去磁方法研究

来源 :湖南大学 | 被引量 : 0次 | 上传用户:gdmkhx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
双流制电力机车可以工作于直流供电网与交流供电网,可实现跨地区、跨供电制式运行,打开了多地区一车互联的格局。随着我国都市圈建设发展与“一带一路”倡议的提出,双流制电力机车对推动经济发展有着重要作用,在我国有广阔前景。对于双流制电力机车,为了减小系统体积,直流工况下通常依靠牵引变压器的牵引绕组当做直流滤波电抗器。直流供电制式下,数百安的电流流过牵引绕组后,铁芯会产生严重的剩磁。当机车接入交流供电网后,铁芯剩磁会引发变压器一次侧的励磁涌流。为确保机车安全运行,需要采取措施去除剩磁。本文围绕牵引变压器铁芯去磁方法进行了如下研究:
  (1)对轨道交通及其供电制式的发展现状进行分析,阐述了多流制电力机车的优越性,并简要研究了几种典型的多流制电力机车。重点说明了牵引变压器剩磁带来的危害,并结合国内外去磁方法的研究现状,思考如何在机车内进行有效去磁。
  (2)研究双流制电力机车牵引拓扑结构,分析双流制电力机车的运行机制。针对牵引变压器,重点对其结构与牵引绕组接线方式进行研究。在此基础上,又通过对铁磁材料的特性分析,推理总结出直流制式下牵引变压器铁芯出现剩磁的原因。
  (3)本文通过对常规的磁性元件去磁方法的研究,归纳出去磁的基本思想。并结合机车牵引拓扑结构特点,提出了两种基于设备复用的去磁方法,分别为被动去磁法与主动去磁法。对所提去磁方法,阐述了其基本原理,并对去磁过程进行深入研究。
  (4)本文以中车集团的20E型机车作为研究对象,根据机车参数搭建仿真模型进行研究。首先使用ANSYS与PLECS仿真软件分别建立牵引变压器模型,对本文所提出的牵引变压器铁芯出现剩磁的原因进行证实。在PLECS软件中对不同的去磁方法建模仿真,仿真得到的电压、电流波形与理论分析一致。通过得到的铁芯磁滞回线波形证明两种去磁方法均可以有效去除剩磁,且去磁时间符合要求。仿真结果证实文中所提去磁方法是有效的。最后,针对两种去磁方法进行了比较。
其他文献
随着我国能源战略的转型,能源开发的重心正向以风能为代表的新能源倾斜。近年来,风力发电发展迅速,大量风电并入电网,双馈风电机作为风力发电的主流机型,其装机容量不断提升。与其他形式的新能源发电类似,双馈发电机需要通过电力电子变换器作为桥梁接入电网。随着新能源并网发电规模的不断扩大,越来越多的电力电子设备接入电网,传统电网的电力电子化特征凸显,电网强度降低,导致双馈风电场并网时,振荡问题频频发生,严重威
近年来,随着化石能源的不断枯竭和环境问题的日益严重,光伏、风电等新能源发电技术由于污染小、可靠性高、能源利用率高等优点得到了更多的应用。并网逆变器作为新能源发电中的核心装置,其控制算法受到了相关学者的广泛研究。虚拟同步发电机(Virtual Synchronous Generator,VSG)技术是一种将并网逆变器控制成具有传统同步发电机动态特性的方法,可以模拟同步发电机的调频、调压特性,能够很好
受限于海岛独特地理位置,铺设远距离海缆与大陆电网互联在经济上需要付出极高代价,因而目前岛内多采用燃油发电形式为负荷提供电能保障。但计及海岛脉冲特殊负荷的能量需求及运行特性,单一燃油发电形式或难以满足岛内电能的特种需求,唯有将多种新能源发电装置、储能装置和柴油发电机组组合起来,采用电能互联技术,构建多端口特种能量路由器系统,才能为海岛提供稳定的电能保障。且该能量路由器系统在可靠性方面要求较高,一方面
智能电网、新能源发电、工业自动化、航空航天等行业的快速发展,对逆变装置的效率、功率密度、可靠性等提出了更为严苛的要求。由SiIGBT和SiCMOSFET构成的混合器件具有低开关损耗、低成本、大载流能力和高冗余能力的优势,有望突破逆变装置在功率半导体器件层面的瓶颈。目前,混合器件开关策略与逆变装置的性能之间缺乏深入的研究,基于混合器件的逆变装置的性能有待进一步提升。为此,本文以基于混合器件的单相逆变器为研究对象,设计并搭建了相应的实验平台,对适应于逆变器的混合器件开关策略展开深入研究,以提升基于混合器件的逆
随着电力电子技术的长足发展,低压直流配电系统具有供电质量高、电能变换次数少、便于分布式微源接入等优势,受到学术界和工业界的广泛关注。然而,发生短路故障时,直流配电系统故障电流迅速上升,且直流故障电流没有自然过零点,对电力电子器件安全性和电力系统稳定性造成严重威胁。这要求保护技术根据复杂的故障暂态特征可靠、有选择地快速隔离故障区域,维持低压直流配电系统高可靠运行。目前,直流配电系统故障分析和保护研究
电力电子化已成为电力系统发展趋势,在牵引供电系统中也不例外,电力电子牵引变压器(Power electronic traction transformer,PETT)通过采用电力电子器件实现了20%的体积缩小以及15%的重量减轻,符合未来高速动车组轻量化与高速化的要求。本文致力于分析恶劣运行工况(如频繁弓网离线、过分相等)对新型PETT牵引传动系统各环节造成的影响,以及提出相应的治理方案来为后续实
在全球推动能源变革的背景下,风电发展迅速。为了提升风能利用效率和降低风电场单位成本,风电机组单机容量不断增大,额定电压也提升到中压等级。基于多电平全功率变流器的中压大功率直驱永磁风电系统成为了风电研究的热点。本文提出了一种基于六边形模块化多电平变流器(Hexagonal Modular Multilevel Converter,H-MMC)的中压大功率直驱永磁风电系统,可以将三相风力发电机通过一级
功率半导体器件是电力电子技术的核心,特别是第三代宽禁带半导体中的碳化硅(SiC)器件在临界击穿电场、禁带宽度、热导率等物理性能方面远远优于Si器件,因此将成为未来研究与应用的热门方向,在高频、高效、高功率密度设备中具有良好的应用前景。碳化硅双极结型晶体管(SiC BJT)具有与主流器件SiCMOSFET相似的开关速度和比导通电阻,并且没有SiCMOSFET的栅氧可靠性问题,在高温环境中有独特的应用优势。然而驱动电路的性能制约了SiCBJT的使用,其问题有两个方面:首先是结构复杂且稳态损耗过大,在轻负载下产
在过去的60年中,硅(Silicon,Si)材料发展至今已十分成熟,其硅基半导体器件的性能也已达到材料本身的极限。碳化硅(Silicon Carbide,SiC)作为第三代宽禁带半导体材料,具有比硅材料更加优越的材料特性。在众多基于SiC材料的功率器件中,碳化硅门极可关断晶闸管(Gate Turn-off Thyristor,GTO)具有导通压降低、导通损耗小的特点,同时GTO的电流处理能力也明显高于其他功率器件,因此SiCGTO是高压大电流变换领域和脉冲开关领域的首选功率器件,这些应用领域对SiCGTO
作为新一代宽禁带半导体材料,碳化硅(Silicon Carbide,SiC)已经展现出优良的电学、热学特性,基于SiC材料的功率器件具有耐高温、耐高压、低损耗、开关速度快等优点。近年来,SiCMOSFET制造技术迅速发展,已经在电动汽车、光伏逆变器等领域有了初步的市场化应用,显著提高了装置的工作频率和整机效率,SiC器件取代传统硅(Silicon,Si)器件已经成为电力电子领域的趋势。然而,由于SiCMOSFET栅介质层存在大量的界面态陷阱,其潜在的退化严重影响了器件的长期可靠运行;此外,目前SiCMOS