胜利东二号露天矿节理岩体边坡变形及控制工程应用研究

来源 :中国矿业大学(北京) | 被引量 : 4次 | 上传用户:sunmoon
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在节理裂隙发育的露天煤矿边坡中,滑坡概率显著增加。预测和分析露天煤矿裂隙岩体边坡的风险和变形规律,制定并采取有效的预防和控制工程措施,对保障矿山安全高效生产具有重要的意义。本文以胜利东二号特大型露天煤矿北帮节理岩体边坡为研究背景,根据现场调查与统计分析,建立了边坡岩体的节理分布概化模型,基于Monte-Carlo原理对节理岩体边坡进行三维网络模拟,并通过底摩擦相似实验和离散元数值分析,对裂隙岩体不同分布产状下,边坡变形规律进行了系统的研究,确定了裂隙岩体边坡的滑坡模式。进而,利用AHP法将定性与定量分析相结合,建立了控制节理裂隙边坡变形的管理措施综合评价模型,提出了最优的工程控制方案,分析了研究案例的工程应用效果。本文的研究成果对矿山类似边坡的稳定性分析研究和滑坡治理工程管理具有重要的参考意义。
其他文献
一个县小则十几万人,大则百把万人,一个决策下去,其影响非同小可,来不得半点含糊。海瑞在他的《令箴》中说:"官之至难者,令也。"此意即最难做的官是县官。因此,县级领导必须有各方面的知识和很强的能力,否则难以胜任。古人云":宰相起于州郡。"我们党和国家的许多高级领导人也都有丰富的基层工作经验。县级岗位是锻炼和培养干部的好课堂。现在从事县级领导工作的同
期刊
在本论文中,我们主要研究乘积空间Rn ×Rm 上的Flag型函数空间及应用.包括定义了 Flag型非齐次Triebel-Lizorkin和Besov空间,并得到点态乘子算子在这两类空间的有界性;定义了Flag型非齐次Liphschitz空间,并得到Flag型奇异积分算子在该类空间的有界性.另外,利用Flag型Sobolev空间,我们建立了Flag型Fourier乘子算子的加权有界性.本文共分四章,
教师的作业设计和布置对提高教师的教学质量起着关键作用。就小学数学而言,积极探索创意作业,主要分为讲解类、操作类、实践类和梳理类等类型。根据不同的课程内容,运用对应的作业类型,并结合案例的具体实施与分析,展示创意作业的教学效果。
本文主要使用迭合度理论研究了共振条件下几类非线性分数阶微分方程边值问题解的存在性,唯一性及正解的存在性.首先,我们利用迭合度理论得到了一类含有高阶Caputo分数阶导数的共振边值问题解的存在性.进一步,我们利用连续性定理得到了一类分数阶微分方程耦合系统的共振边值问题解的存在性及唯一性.根据O’Regan和Zima建立的多值映射型Leggett-Williams定理,我们获得了一类分数阶包含系统共振
本文主要研究了关于超越亚纯函数和多项式的零点性质的两个重要猜想,以及与第一个猜想相关的特定超越整函数类的动力学性质.2001年,W.Bergweiler研究正规定则时提出如下关于超越亚纯函数零点性质的猜想:设f(z)为超越亚纯函数,若(?)z∈C都有f’(z)≠1,则f(z)在所有零点处的-阶导函数值所成集合f’(f-1(0))是无界的.BL.Sendov提出了如下关于多项式零点与多项式一阶导函数
煤层气作为一种清洁的能源越来越受到各产煤国的重视。煤层气开采过程是流体(气体和水)在煤中吸附/解吸、扩散和层流的复杂流动过程。因此研究气体在煤中的流动规律不仅有助于认识气体在煤中的流动过程,对煤层气开采也具有积极的指导意义。通过分析煤渗透率室内实验、煤渗透率模型和煤中气体流动数值模拟的研究现状,本文认为目前针对煤渗透率模型的研究仍存在不足。以此为切入点,通过引入煤的各向异性和煤基质内膨胀应变系数,
在"双减"政策背景下,教育部门严控书面作业量,因此,探索设计高质量的非书面作业有着重要意义。本文以落实数学课程目标、体现数学学科特点、符合学生认知规律为作业设计原则,探讨口头化作业、操作化作业、游戏化作业、研究化作业、阅读化作业等非书面形式作业的有效设计及其在小学数学教学实践中的应用。
利用CH型演化方程的零曲率方程,我们求得并证明了耿-薛方程和耿献国、薛波提出的一个三分量CH型系统的双Hamilton结构.通过Dirac我们将耿-薛方程双Hamilton结构约化到Novikov方程的双Hamilton结构.求解双Hamilton结构方法的一个重要的问题是构造方程的无穷多守恒量,除了可从双Hamilton结构本身递推出两两对合的守恒量外,还可以从Lax表示出发构造出求方程无穷多守
构造了经典Boussinesq方程的带参数的Backlund变换;重新定义了超对称two-boson系统的Backlund参数,并构造了非线性叠加公式;给出了超对称KdV方程的一个合适的Darboux变换并构造了可积的超微分-差分系统和差分-差分系统:构造了广义超KdV方程的三个Backlund-Darboux变换,导出了三个离散系统以及它们的Lax表示,其中一个离散系统可约化应用于Kupersh
近年来,我国教育事业获得较快发展,当前学校教育注重结合社会发展实际来培养学生,帮助学生掌握相应学习技能,提升他们的综合素养。在此大背景下,如何培养学生的学科核心素养,这是教育界普遍关注的问题。作业是学校教学工作的重要内容,在进行作业设计方面,更应当以促进学生学科核心素养发展为理念,以培养学生全面发展为中心进行优化与设计。基于此,本文将以小学数学作业设计为例,从分析数学核心素养的内涵入手,着重分析优