主客体相互作用介导的水相聚合诱导自组装

来源 :清华大学 | 被引量 : 0次 | 上传用户:wf136156491
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
聚合诱导自组装(PISA)是近年来高分子合成与自组装领域的重要前沿技术,它是在聚合反应制备两亲性嵌段共聚物的同时发生原位自组装。这种技术可以实现组装体高浓度、形貌可控的简单制备。然而,PISA的原理要求单体可溶而聚合物不溶。这极大地限制了PISA方法单体/溶剂体系的选择。为了拓展PISA单体/溶剂的选择范围,特别是水相体系的单体选择,本论文发展了基于主客体相互作用的聚合诱导自组装方法。通过形成主客体复合物增加单体的溶解性,我们实现了苯乙烯、(甲基)丙烯酸酯等多种疏水单体的水相分散聚合PISA。通过PISA中的动力学控制,本方法可大量制备均一的纳米管,并实现一维长度调控。我们也使用了液晶性偶氮苯单体制备了立方体形状的组装体,证明了这种方法可一步将疏水功能单体引入水相PISA体系,制备高浓度组装体。本论文主要包括以下三个部分:(1)以甲基-β-环糊精(CD)作为主体分子,疏水单体苯乙烯(St)为客体分子,研究了主客体相互作用介导的水相分散聚合PISA。我们系统地研究了CD/St的主客体相互作用、主客体复合物的水溶性、水溶液中的分散聚合PISA及CD对组装体形貌和稳定性的影响。通过调控PS的聚合度,实现了动力学控制的形貌纳米管、纳米片的一步简单制备。通过纳米管生成的动力学研究揭示了PISA过程中动力学对形貌转变的影响。(2)进一步研究了PISA体系中内在的聚合动力学对组装体过程的调控,通过对聚合速率的调控,实现了尺寸均一、长度可控的一维组装体的大量制备。系统研究了引发剂、聚合温度、聚合速率等聚合反应条件对原位自组装和组装形貌转变路径的调控。建立模型解释了聚合速率对组装体融合及组装体形貌转变的调控机理。通过引发剂的选择,可以简单实现PISA过程中组装体融合的调控,调控组装体聚集数,实现对组装体形状和尺寸的调控。(3)将这种方法推广到多种疏水单体,包括多种(甲基)丙烯酸酯、偶氮苯单体和含氟功能单体。研究了偶氮苯单体的PISA,一步制备了刺激响应性立方体组装体。证明了主客体相互作用介导的水相分散聚合PISA可以拓展并适用于多种疏水单体,这种方法可以一步将疏水功能单体引入PISA体系,制备高浓度功能组装体。
其他文献
在过去的几十年,过渡金属氧化物由于其丰富的物性和广泛应用一直吸引着人们的研究和关注,并发现了一系列新奇的现象,比如铜氧化物中的高温超导、稀土镍酸盐中的金属绝缘体相变、锰氧化物中的庞磁阻效应等。在这些材料的研究中,最重要的课题之一就是通过各种手段对其性质进行调控,比如压力或外延应力、化学掺杂、磁场、电场等。自1947年世界上第一个晶体管问世以来,基于电场调控界面电荷密度的方法成为一种普适的手段,被广
作为一种强电荷-晶格-自旋耦合的材料,多铁材料蕴含丰富的物理现象,拥有广阔的应用前景。单相多铁材料由于在单一体系中同时具备多种铁性有序,因此为多铁耦合机制的探究提供良好的平台,是多铁材料中的一个重要分支。六方锰氧化物和铁氧化物作为单相多铁材料的典型代表,因其特有的铁电性、铁磁性和耦合性质而具有独特魅力,同时也仍蕴含着丰富的、亟待解决的科学问题。电子显微学方法是一套基于透射电子显微镜发展而来的系统的
硼化合物及材料在化工、航空航天、材料等领域都具有极其广泛的应用,如超硬材料、半导体电子器件以及具有抗菌特性的生物化合物等。2015年二维硼材料—硼墨烯的成功合成又为新型硼材料的设计和发展提供了基础,开启了硼基平面材料的研究大门。而纯硼团簇的研究相比于碳团簇相对较少,这是由于硼元素缺电子特性导致的成键复杂性以及硼团簇随尺寸的增长所表现的结构多样性。团簇大小数量级一般在纳米范围,可表现出很强的量子效应
超薄二维(2D)纳米材料作为一种重要的材料,在许多领域都显示出良好的应用效果,如电子/光电子、能源存储与转换、传感器和催化剂等。这些取得的成果推动了通过实现新的功能2D材料来扩展2D材料家族的全面研究工作,并需要创新的合成路线。因此,二维层状材料一直是研究的热点,这主要是由于二维层状材料相对较弱的平面间范德华力使其能够制备成二维纳米材料,其中液体和机械剥落起了重要作用。这些材料包括半金属石墨烯、半
新奇二维结构的研究一直受到广泛关注。由于其中的量子限域效应明显,二维材料常伴随拓扑、超导、铁磁和电荷密度波等丰富的量子现象。目前,对二维材料的研究主要集中在从堆叠的层状体相中剥离出的二维结构。而对于自然界中大量存在的非层状材料,它们在二维极限下的结构,往往具有与体相不同的元素配比和原子构型,因而展现出不同寻常的电子特性。这一大类二维材料还没有被广泛研究。本论文基于第一性原理计算,寻找与设计非层状材
化学反应及纯化和分离等过程多是在溶液体系中进行的,因而溶液化学研究具有重要意义。其中,一个关键问题就是深入研究溶液的结构及其物化性质。溶液的微观结构较固体和气体而言更为复杂,酸碱性是溶液诸多性质中最为重要的一个。本论文借助超额红外光谱,同时结合红外光谱、核磁共振波谱和量子化学计算研究了离子液体与共溶剂体系的溶液结构和分子间相互作用,还尝试了借助特定官能团的光谱特征构建溶液微观结构和物化性质的探针方
近年来,单原子催化剂在非均相催化领域引起了广泛关注。单原子催化剂不仅原子利用率高,而且在催化CO氧化、水煤气转换、醇的选择性氧化、二烯烃或炔烃的选择性加氢等诸多化学反应中表现出优异的活性及选择性。然而,目前单原子催化剂也面临着诸多挑战,比如单原子在反应过程中的团聚、单原子负载量较低、单原子和纳米团簇孰优孰劣、单原子在特定反应条件下的局部结构等问题。本论文运用密度泛函理论方法,系统地研究了单原子催化
超薄平面结构赋予二维原子晶体诸多优异与新颖的物理、化学性质,在电子器件、催化等领域呈现出广阔的应用前景。这类超薄晶体材料在厚度方向上仅有少数原子,其性质呈现出高度的结构依赖性,因而这类材料的结构表征对其性能调控与实用化至关重要。然而,超薄的特性使得这类材料在表征过程中易发生结构损伤。目前常用于表征二维材料物理结构的显微、光谱及光学等手段具有各自的局限性,尚缺乏可无损表征这类材料的普适性方法。除物理
绝大多数金属结构材料中含复相组织,其力学性能受各相的数量、形貌、分布、取向、大小等的影响。随着表征技术的进步,研究组织中细小沉淀相的晶体学形貌才成为可能,然而对大多数材料而言,目前相关知识都不完善。本工作系统地研究了高锰钢中先共析魏氏渗碳体的形貌、相变晶体学、界面迁移模式、表面浮凸效应,力图通过对该系统的研究,提高对化合物沉淀相形貌和相变晶体学的深入认识。利用透射电子显微镜和扫描电子显微镜表征了渗
刺激响应性高分子是指在外界环境发生较小的改变时,在结构和性质上产生较大改变的材料,能够将化学或者生化信号转化成光、热、电或机械力信号,反之亦然。为了能够对生命体的奥秘实现更深入的研究,发展新型的智能生物材料和纳米技术、研究新型刺激响应性高分子材料具有重要的意义。其中,具有活性氧响应性的高分子材料尤为重要。活性氧物种,作为广泛存在于生物体内的一类活泼物种,与很多疾病的产生都息息相关。近年来,关于活性