Riemann-Finsler子流形几何研究

来源 :复旦大学 | 被引量 : 0次 | 上传用户:nihaochaochao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
 In this report we shall study submanifolds in (pseudo-)Riemannian geometry and Finsler geometry. In Chapter 1, we use Gauss map to study the topology, volume and diameter of submanifolds in a sphere.We prove that if there exist 1 ≥ ε > 0 and a fixed p-vector a such that the Gauss map g of an n-dimensional complete and connected submanifold M in Sn+p satisfies < g, a >≥ ε,then M is diffeomorphic to Sn,and the volume and diameter of M satisfy εnvol(Sn) ≤vol(M) ≤ vol(Sn)/ε and επ ≤diam(M) ≤ π/ε,respectively. We also characterize the case where these inequalities become equalities.As an application,we obtain a differential sphere theorem for compact submanifolds in a sphere. In Chapter 2, we use Gauss map to study spacelike submanifolds in de Sitter space form. We prove that if there exist ρ > 0 and a fixed unit simple (n + 1)-vector a ∈ Gpn+1,p such that the Gauss map g of an n-dimensional complete and connected spacelike submanifold Mn in Snp+p satisfies 〈g, a〉 ≤ ρ, then Mn is diffeomorphic to Sn,and its volume satisfies vol(Sn)/ρ ≤vol(M) ≤ ρnvol(Sn). We also characterize the case where these inequalities become equalities. In Chapter 3 we obtain a lower bound for the first Dirichlet eigenvalue of complete spacelike hypersurfaces in Lorentzian space in terms of mean curvature and the square length of the second fundamental form. This estimate is sharp for totally umbilical hyperbolic spaces in Lorentzian space. We also get a sufficient condition for spacelike hypersurface to have zero first eigenvalue in term of Gauss map. Then in Chapter 4, we deal with the Finsler geometry of submanifolds with respect to general Finsler volume element. The key is that Shens method still works in dealing with any other Finsler volume element, and we prove that there exists no closed oriented minimal submanifold in Minkowski space with respect to any Finsler volume element. We also obtain an estimate of volume growth for submanifolds in special Randers space and thus provides a necessary condition for a Randers space to be minimally immersed into special Randers space. Finally in Chapter 5, we obtain an extrinsic upper bound for the first eigenvalue of compact Finsler submanifolds in Minkowski space and obtain a Reilly type inequality. It is reduced to the standard Reilly inequality when the ambient space is Euclidean.
其他文献
党的执政能力的科学内涵是什么? 什么是党的执政能力?《决定》的定义是:“党的执政能力,就是党提出和运用正确的理论、路线、方针、政策和策略,领导制定和实施宪法和法律,采
模糊线性方程组解的研究是模糊代数的一个基础部分,而本论文的核心是研讨一类形如X=AX+U的模糊线性方程组的解以及它的迭代算法,其中未知量X和常量U均是由模糊数组成的向量,而A
凸体几何是现代几何学的一个重要分支,凸多胞形是凸体几何的主要研究对象之一,而单形是凸多胞形的最简单的情况,本篇论文将把单形作为主要研究对象。 全文共分为四个部分。第
本文主要考虑一维浅水波方程(Camassa-Holm方程)在半直线上的初边值问题.通过先验估计和紧性方法获得当初值u0∈H2(R+)∩H01(R+)时,局部强解的存在唯一性,以及在一定条件下的
所谓唯一性理论是探讨在什么情况下只存在一个函数满足所给的条件。众所周知,多项式除了一常数因子外,由其零点集决定。但对超越整函数以及亚纯函数就不然,如何来唯一确定一个亚
本文在任意Banach空间讨论了有限个ψ-强伪压缩映射族隐迭代过程的收敛性问题。利用ψ的性质和迭代过程本身的特性,得到了不具误差和具有误差的隐迭代过程收敛于公共不动点的
本文主要研究时滞差分方程的振动性以及一类p-Laplacian边值问题多值正解的存在性.共分三部分内容. 在前言中,作者简单介绍了所研究方向的发展情况,提出了本文研究的主要问
本论文主要研究了具有非局部指数型非线性源的反应扩散系统解的整体存在和不存在性、临界指标,以及相关的关于奇性解的渐近性分析,例如blow-up速率、blow-up集以及boundary l
学位
粗糙集理论是波兰数学家Z.Pawlak于1982年提出的一种有效地处理不完整和不确定数据的理论,其主要思想是在保持分类能力不变的前提下,通过知识约简,导出问题的决策或分类规则。它