本文研究了一类具有无穷分布时滞的Lotka-Volterra系统的鲁棒稳定性和部分变元鲁棒稳定性以及一类具有无穷分布时滞的随机Lotka-Volterra系统的随机鲁棒稳定性.本文首先介绍了Lotka-Volterra系统的研究背景和Lotka-Volterra系统的随机化.其次,本文介绍时滞微分方程稳定性、渐近稳定性、全局渐近稳定性的基本概念,以及有关概率论的基础知识和时滞随机微分方程.接下来,
按:1994年我国机电产品出口取得了历史性突破,出口总额达320亿美元,引起了党中央、国务院领导的高度重视。为此,记者日前走访了国家机电产品进出口办公室副主任倪益瑾。问:党
粉末注射成形过程中的充模过程是在高压下将喂料注入模具型腔中,这是一个不可压缩的非牛顿流体的非等温、非稳态的流动过程,是一个影响因子繁多的包含固相、液相以及模具气体
新课程改革历时十多年,取得了一定的成效,当前的高中化学课堂比以前更加生动,很多新模式也被用于教学中,而自主合作式学习模式是其中一种比较常用的针对学生的学习模式,本文
Wythoff’s游戏是公平组合游戏的重要组成部分.该游戏模型可表述为:有两个各若干个石头的堆,两个游戏者依次轮流选择以下两种方式之一进行移动:(ⅰ)从两堆中选定一堆,从中移走任
本文考虑—维耗散的非线性Schr(o)dinger方程的初边值问题i(e)u/(e)t+(e)2u/(e)x2+g(|u|2)u+iαu=fx∈Ω,t∈R+在如下初值条件u(x,0)=u0(x),x∈Ω和Dirichlet边界条件u|(e)Ω
Sigmund利用适合度为非线性函数的复制方程,得到了前八名策略中的二阶策略L3和L6与无条件策略ALLC和ALLD的动力学行为.基于阈值ω0的影响,本文推广了Sigmund关于二阶策略L3和L6
本文以N=2 AKNS谱问题的伴随特征值问题为出发点,利用非线性化方法,得到了具有Lax方程形式的Lie-Poisson结构下的有限维Hamilton系统,进而对上述有限维Hamilton系统的可积性
在量子力学中,描述玻色-爱因斯坦凝聚的基础模型是Gross-Pitaevskii方程,而刻画偶极玻色-爱因斯坦凝聚的模型为带非局部非线性项的Gross-Pitaevskii方程.在本文中,我们从非线性偏微分方程的严格数学理论出发,以非线性相互作用为切入点,运用现代变分法的一系列技术,构建新的Gagliardo-Nirenberg不等式,进而研究偶极玻色-爱因斯坦凝聚爆破解的存在条件和集中性质.在第