两类半线性椭圆型方程解的性质的研究

来源 :南京信息工程大学 | 被引量 : 0次 | 上传用户:ydzdems
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文研究一类奇异半线性椭圆型方程的Dirichlet问题正的古典解的局部存在性及其正则性以及一类含对流项的二阶半线性椭圆型方程爆破解的局部存在性。 全文包括三大部分: 第一章,介绍了历史背景、研究的主要问题、预备知识和研究的基本方法。 第二章考虑一类奇异半线性Dirichlet问题-△u+k(x)u-α=λup+σ,x∈Ω;u>0,x∈Ω;u=0,x∈Ω。古典解(在C2,γ(Ω)∩C(Ω)中)的存在性。其中,Ω是RN(N≥2)中的有界域,Ω∈C2,γ,γ∈(0,1),α∈(0,1),λ≥0,σ>0,p>0,k(x)∈C1(Ω),k(x)>0(x∈Ω)。应用奇异非线性Dirichlet问题上、下解的方法以及极大值原理,得到了这类奇异半线性Dirichlet问题正古典解的存在性,最后进一步给出来解的正则性。 第三章考虑如下模型问题-△u+k(x)·up=|u|q,x∈Ω;u=+∞,x∈Ω。其中,Ω是RN(N≥3)中的C2有界区域,q∈(1,2),p≥q/2-q>1。在这一章中应用摄动方法,结合古典上、下解方法,得到该问题爆破解的存在性。
其他文献
说话是一门艺术,一种技巧,良好的口语是现代人的一项基本的生活能力。语文课程标准指出:小学生应当具有日常口语交际的基本能力,要学会倾听、表达与交流,初步学会文明地进行
基本流的不均匀性,空气的介入,粘性及非线性性是影响涡柱面稳定性的主要因素。当Reynolds数超过某个临界值时,涡柱面都是不稳定的,此时定常层流流动演变成湍流流动。Rayleigh证明
期刊
本文主要开始学习实单左对称代数。首先讨论了复代数和实代数之间的关系,并在一些已知的复单(包括部分半单)左对称代数分类的基础上给出了它们对应的实形式也就是实单左对称代
本文在阐述建筑工程施工新技术发展状况的基础上,通过从防水施工、大体积混凝土施工、钢筋连接、屋面施工等几个常见的工程技术方面入手,分析了新施工技术,进而提出几点建筑工程
期刊
B样条曲线的节点插入和升阶是计算机辅助几何设计(CAGD)、计算机图形学(CG)中非常重要和最常用的技术。曲线升阶是曲面设计和几何造型中的一项重要技术,是CAGD系统中的一个基
赏识教育不单纯是一种教育模式,更是一种教育理念,它充分体现了以人为本的精神.赏识教育在高等教育中势在必行,它是时代教育发展的迫切要求,是历史发展的必然产物,是高校改革
风险理论是现代精算学研究的基础,它通过建立和分析随机风险模型来帮助保险公司的运营.复合马尔可夫二项模型作为经典复合二项模型的推广,在风险理论中有着至关重要的作用.本文中主要研究具有随机保费收入的复合马尔可夫二项模型,得到了有条件和无条件下Gerber-Shiu期望罚金函数需满足的瑕疵更新方程和渐近方程,并给出一些具体破产量的渐近表达式.本论文共分为三章.第一章本章对论文研究的背景作了简要介绍,并对
伴随着新课改理念的不断深入人心,许多工作在教育一线的广大教师都能清晰地认识到“授人以鱼,不如授人以渔”的教育原理,开始在平时的教学实践中切实注意提高学生自主学习、
选什么样的人,怎样选人,历来是我们党高度重视的一个重大问题。胡锦涛同志在贯彻《干部任用条例》讲话中明确指出,要把“三个代表”作为选拔任用干部最重要、最根本的要求。