【摘 要】
:
随着空间电磁环境的复杂化和各类无线应用场景的多样化,对射频系统的设计提出了高性能、可重构、小型化等新要求。天线作为收发前端,其性能直接影响系统功能的实现,因而关于高性能天线的研究成为重要的研究方向。特别是相控阵和数字阵列技术的发展,大大提升了天线波束扫描的灵活性。传统相控阵天线分布于三维空间,通过控制单元的位置排布、激励幅度和相位实现特定的波束综合。然而实际系统应用往往需要兼顾多种性能要求,为了提
论文部分内容阅读
随着空间电磁环境的复杂化和各类无线应用场景的多样化,对射频系统的设计提出了高性能、可重构、小型化等新要求。天线作为收发前端,其性能直接影响系统功能的实现,因而关于高性能天线的研究成为重要的研究方向。特别是相控阵和数字阵列技术的发展,大大提升了天线波束扫描的灵活性。传统相控阵天线分布于三维空间,通过控制单元的位置排布、激励幅度和相位实现特定的波束综合。然而实际系统应用往往需要兼顾多种性能要求,为了提升阵列在复杂环境下的适应性,非传统天线阵列技术应运而生。本质上是通过引入天线单元的多维控制自由度,寻求阵列信息感知和处理能力的提升。在相控体制下,引入时间作为第四维控制参数,形成时间调制阵,也称四维天线阵。通过射频开关等器件对辐射单元进行周期调制,实现了单元的动态激励,降低了天线馈电网络的设计复杂度,有利于实现低副瓣辐射、同时多波束、实时自适应波束形成等功能,保证高性能收发的同时可兼顾阵列低成本、小型化设计需求。突破传统相控体制,在天线单元通道间引入微小的频率偏量(远小于载波频率),构成另一类新型天线阵列——频控阵,也称频率分集阵列。单元通道频偏的引入使得天线辐射电场具有空间角度维(俯仰角、方位角)、距离维和时间维四维相关特性,有利于实现距离相关的目标探测和干扰抑制、波束自扫描等功能。围绕天线领域的前沿方向,针对非传统相控及频控天线展开新技术、新方案的研究将有利于解锁新的无线系统应用场景。本文以天线阵列的小型化和高性能设计需求为背景,面向实际系统应用,进行相关理论研究和应用探索。主要贡献和创新点包括以下几个方面:(1)研究了多域融合的自适应波束形成算法。针对小型化多模共享导航天线自由度不足导致抗干扰性能恶化的问题,提出了基于极化敏感阵列的空域-极化域融合自适应处理方法。为保证导航信号有效接收,提出了增加极化约束的线性约束最小方差算法,在口径不变的条件下提升了阵列自适应自由度。为进一步降低天线系统硬件复杂度,探索了基于时序相位加权的单射频通道接收方案。引入时域加权处理实现天线口径的Walsh-Hadamard变换,并基于逆变换重构得到的通道信息进行自适应处理。通过分析不同类型干扰信号的抑制效果发现,该方法可以大大降低抗干扰模块的硬件设备量。(2)研究了频控阵的空间聚焦波束方向图综合方法。针对线性频偏频控阵方向图在距离、角度、时间三维周期分布的问题,为避免空间栅瓣并实现距离-角度两维聚焦,提出了阵元位置、频偏参量两维优化的“点状”波束方向图综合方法。从阵因子角度分析了频控阵辐射栅瓣的产生机理,并提出采用区间约束的频偏优化可以实现空间距离-角度聚焦的波束综合。考虑到频控阵馈电网络复杂,为同时减轻系统软硬件设计复杂度,提出了稀疏布阵-频偏优化两维控制的阵列综合方法,并提出一种变步长的快速迭代方法,用于求解符合期望的最少阵元数天线排布方案。(3)研究了频控阵在距离依赖干扰抑制中的应用。常规频控阵在距离维辐射副瓣较高而导致易受空间干扰影响,为克服这一问题,提出一种多级频偏混频结构,通过两级频偏参量优化,可以实现距离-角度全空间的低副瓣方向图综合。在此基础上,利用其波束距离维分辨特性,将频控阵应用于距离相关的干扰抑制。由于频控阵天线通道易产生误差而导致导向矢量失配,并且距离维副瓣随机分布易导致干扰接收功率动态变化,提出了基于特征子空间投影的稳健自适应波束形成方法,实现了距离、角度两维的主波束对准和干扰零陷优化。(4)研究了时间调制阵列的高效谐波波束形成方法。分析了时间调制同时多波束辐射原理,在时频域对比分析了不同类型调制脉冲产生的谐波波束幅度和相位分布规律。为实现各个谐波波束的独立指向控制,提升时间调制阵列的边带利用效率,提出了预处理矩形脉冲单边带调制方法。面向远场无线功率传输中同时多用户充电的应用场景,结合方向回溯阵列技术,实现了功率基站和无线终端的波束对准和高效率充电,克服了矩形脉冲调制下谐波波束指向彼此制约、边带辐射电平不易调控的问题,为无线功率传输的天线阵列设计提供了新的解决方案。(5)研究了时间调制阵列在同时功率传输和终端定位系统中的应用。为实现精准功率馈电的远场无线功率传输,提出了基于互调反馈的终端定位策略。提出采用时间调制阵列产生定向双波束对终端馈电,实现了空间双音波形激励。终端整流器在双音激励下自发产生的互调频率谐波可用于建立收发反馈链路。通过两级开关网络实现的多基线时间调制阵列接收反馈回波,提出了开关非理想特性的补偿方法,实现了高精度终端方向估计;最后基于反馈信号强度测量,实现了终端距离估计。该方法有利于基站根据终端估计位置实时调整波束指向和发射功率,从而提升系统传输效率。通过原型机实验证明了该方法的有效性。
其他文献
众所周知,扰动如外部环境扰动、噪声扰动、机械系统与电力系统内部的摩擦等普遍存在于各类实际系统中,而这些实际系统都是本质非线性的。因此,提高非线性系统的抗扰动能力并得到更好的控制性能具有重要的实际意义。近年来,在非线性稳定性理论、Lyapunov函数、反推(Backstepping)技术、基于扰动观测器的控制以及其他设计工具的基础上,不确定非线性系统的控制设计取得了丰富的研究成果。但大部分已有的成果
随着计算机特别是移动计算机技术的普及和发展,被动接受信息的方式已不能满足人们的需求了,应运而生的人机互动是优化利用计算机的一个重要问题。而诸如增强现实(Augmented Reality,AR)等人机交互手段越来越受到人们的关注。如在军事实战演练、医疗模拟手术、汽车维修助手、电影制作、交互式游戏、旅游向导、生活辅助等应用邻域都有涉及。这些应用中,需要将虚拟的事物或者信息准确地叠加在真实物体或者场景
随着信息科技的飞速发展,信息产业对计算机人才素养要求越来越高。计算机教师在教学过程中应与学生积极互动、共同发展,要处理好传授知识与培养能力的关系,注重培养学生的独立性和自主性,引导学生质疑,探究,在实践中学习,促进学生在教师指导下主动学习。本文讨论的问题是如何在中专院校的计算机教学中实现有效教学,让学生为将来的工作,需要准备充分的专业知识,以及实践能力和学习能力。
随着物联网技术的发展,越来越多的传感器、移动终端和计算机通过网络联系在一起。物联网传感器已经作为基础装备应用到电力系统、交通系统、建筑系统、供水系统、油气系统以及家用电器等生活的各个方面。近年来,由于物联网技术得到广泛与深入的应用,海量的数据处理对计算资源的需求显现爆炸性增长的趋势。云计算和边缘计算技术的出现为海量数据的存储与处理提供了大量的计算资源,而大数据技术则为海量数据的有效处理与分析提供了
随着信息技术在农业领域的应用越来越广泛,农业数据来源更加广泛,数据维度变得越来越高,更新更加迅速、数据类型也更加多样。信息与互联网技术通过监测和测量物理环境的各个方面,以前所未有的速度产生海量数据,这意味着需要大规模收集、存储、预处理、建模和分析来自各种异类源的海量数据。面对大量的农业数据需要采用人工智能、机器视觉、数据挖掘以及云计算等多种技术将农业大数据整合到计算机系统中,建立信息库并且从中挖掘
智能视频监控系统作为近年来计算机视觉领域的研究热点,它的主要职能是利用计算机视觉技术和模式识别技术实现所监控场景的自主图像处理、分析和理解,其核心技术包括目标检测、目标跟踪、目标识别和行为理解。智能视频监控系统可以用于社会安全管理、智能交通管理、智慧城市建设等诸多方面,发挥出了巨大的社会效益和经济效益。作为智能视频监控系统的核心技术之一,目标跟踪担负着承前启后的关键任务。目标跟踪是在监控场景中完成
随着云计算和大数据的迅猛发展以及广泛应用,越来越多的政府机构、商业机构以及个人用户开始使用云服务器提供的各种服务。在云提供的各式各样的便利服务中,远程数据存储是应用最广泛的服务之一,它不仅极大程度地节省了用户本地存储开销,而且为用户提供了不受时间及空间限制的存储服务。为了确保存储数据的完整性以及减轻在线验证的压力,用户可以委托第三方对云上存储数据进行完整性公开审计。本论文在已有公开审计方案的基础上
在现代无线通信系统研究领域,数据信号的波形以及无线接入方式设计一直是研究的热点方向,因此已经有相对丰富成熟的研究成果。相较而言,现代无线通信系统中的导频信号却鲜有人关注,然而关键导频信号的设计对蜂窝系统性能至关重要。特别的,当今的蜂窝系统正在从人联网应用以及在授权频段部署扩展到物联网应用以及在全频段部署。在此情形下,新型导频信号的设计对于蜂窝系统在扩展领域必不可少,本文针对蜂窝无线通信技术在大规模
正弦信号的参数估计在军事、电力、生物医学等许多领域有着广泛的应用,因而得到了研究者的高度重视并涌出现大量估计算法。像快速傅里叶变换(FFT)等经典方法已被广泛应用于实际工程中并取得了很好的结果。近年来,正弦信号的参数估计问题在控制领域也受到越来越多的关注,比如在处理线性(非线性)系统的扰动抑制或者柔性机器人的振动抑制等问题时,具有渐近收敛性质以及一定稳定性能的参数估计器往往是必不可少的工具。基于此
毫米波近程探测技术因其在恶劣气候条件下具有潜在优势,加上毫米波固态器件技术的发展,在多个领域得到了广泛的应用。但是在雨、雪、烟雾、和霾等恶劣工作环境下,毫米波近程探测系统获得的信号会受到噪声的严重干扰,系统探测精度等性能会受到很大影响。因此,信号去噪技术成为毫米波精确探测系统不可缺少的一个组成部分,良好的噪声处理技术可以提高探测系统的性能。现有的线性去噪技术对低信噪比条件下毫米波近程探测系统信号的