论文部分内容阅读
计算机医学图像在临床诊断和治疗中的作用越来越显著。而显微图像的自动分析是医学图像处理和分析的重要研究课题,它不仅为医生赢得了诊断时间而且提高了诊断的精度。
由于小波变换在不同尺度层上具有“变焦”的功能,根据显微图像的特点利用小波变换的自适应时频窗性质,对细胞边缘和背景噪声采取不同的阈值,再利用模角可分离的性质有效地分离出细胞边缘。对此细胞边缘运用圆弧算法实现显微图像的细胞识别和定量分析。
一、多分辨分析和小波变换
要构造一个L2空间中的小波基,关键是要找到它的相应的多尺度分析生成元(),通过实际检测,三阶B样条函数更适合显微图像的处理,
给出M+1尺度上的离散采样值{fM+1(m,n)}数据,要计算处M尺度层上的数据,这就是分解算法的要求。计算分解系数的过程和公式具体地给出如下:
fj+1(x,y)=∑m,njm,n()j,m(x)()j,n(y)+∑m,najm,n()j,m(x)ψj,n(y)+∑m,nβjm,nψj,m(x)()j,n(y)+∑m,nγjm,nψ(x)ψj,n(y){cM+1m,n=f(m,n),cMm,n=∑k,lh(k-2m)h(l-2n)cM+1k,lαMm,n=∑k,lh(k-2m)g(l-2n)cM+1k,lβMm,n=∑k,lg(k-2m)h(l-2n)cM+1k,lγMm,n=∑k,lg(k-2m)g(l-2n)cM+1k,l相应的重构算法为:cM+1m,n=∑k,lcMk,lh(m-2k)h(n-2l)+∑k,lαMk,lh(m-2k)g(n-2l)+∑k,lβMk,lg(m-2k)h(n-2l)+∑k,lγMk,lg(m-2k)g(n-2l)在正交小波分解中,用复杂地计算来且定初始数据是不合算的,此处用了变通的方法,简单取用{cMk}={f(tk)},即用细尺度层上的采样值作为初始数据{cMk}。经实际应用和推理这种假设是合理可行的。
在不同尺度下的图象一般是经过光滑处理的,我们考虑梯度向量(→▽)(f*θ2j)(x,y):[W12j]f(x,y)]=2j[()/()x(f*θ2j)(x,y)]W22jf(x,y)()/()y(f*θ2j)(x,y)=2j(→▽)(f*θ2j)(x,y)因为在(x0,y0)处的梯度向量的方向指明了图像沿这些方向的最大绝对值,图像多尺度边缘就是二进小波变换的局部极值点,边缘点实际是曲面(f*θ2j)(x,y)的拐点。
在2j尺度下,定义梯度向量的振幅为M2jf(x,y)=√|W12jf(x,y)|2+|W22jf(x,y)|2幅角为:A2jf(x,y)=arctg|W21jf(x,y)|/|W12jf(x,y)|幅角A2jf(x,y)等于梯度2j(→▽)(f*θ2j)(x,y)和水平方向的夹角,我们沿幅角方向求出梯度向量的模的极大值点,即找到了图像的边缘点。
二、显微图像的去噪
经过分析和大量的实验,基于显微图像的特点,本文提出了加权组合的阈值选取——对信号小波分解中的低频部分,先检索出与突变点相对应的各尺度层上的小波变换模值,先找到一个突变点的模值,按此点的四个方向——0°,45°,90°,135°找出各点的模值,通过下述公式计算出此点新的模值:xl01/d1xl1+1/d2xl2+1/d3xl3+1/d4xl4/1/d1+1/d2+1/d3+1/d4其中x10为输出值,xli为四个方向上的模值,di为第i个方向上的模值与此点模值的差。对于新产生的模值设定一个阈值,大于此阈值的模值点保留此点及其附近的小波变换值;小于此阈值点的模值置为零。对信号小波分解中细节部分仅保留与突变点位置相应地小波地变换值,其它小波变换值用零值代替。这种处理方法相当于不同尺度层使用不同阈值处理,能较好地表现信号地突变部分,消除噪声表现,能较好地回复各个尺度层的回复信号,回复信号的消噪效果是明显的。
三、显微图像边缘提取
由于边缘是图像的灰度级不连续点,具有奇异性,因此,可以利用检测小波系数模极大值的方法来检测图像的边缘。图像二进小波变换的模正比于梯度向量的模,而小波变换的幅角等于梯度向量与水平方向的夹角。图像的边缘就是其梯度向量模值的局部最大值点,用二进小波变换对图像边缘进行检测,也就是寻找小波变换的模值沿幅角方向的局部极大值点。但在光栅格离散的状态下,与一个像素点紧密相连的周围的8个像素点,分别对应方向0,π/4,π/2,3π/4,π,5π/4,3π/2,7π/2,而W2j(x,y)的取值范围为[0,2π],在此设Tθ表示f(x,y)沿θ方向灰度变换强度,则Tθf(x,y)=|()f(x,y)/()xcosθ+()f(x,y)/()ysinθ|首先找出沿θ=0,π/4,π/2,3π/4这4个方向的边缘强度变换的极大值点,然后在将4个方向的极大值点进行叠加,即可得到该尺度下图像的边缘。试验结果表明,该方法可以检测出大部分的边缘点。
四、显微图像的细胞识别和定量分析
本文对显微图像的特点和细胞的边缘特征进行了研究,运用圆弧算法实现了红白细胞的识别和定量分析,取得了很好的效果。
通过对B样条函数进行小波变换得出奇变点出的模值,记录出模值大于阈值的点(此处的阈值取为14),然后对所得的点确定圆弧的候选链表,按照链表生成条件查找以此链表头为出发点的候选圆弧链。在此基础上提取表头来对各个圆弧进行识别处理。
首先,确定该圆弧的起始点和终止点。
其次,对圆(弧)定位,确定圆(弧)心和半径。根据弧的走向和圆心角的大小,弧可被完整地识别出来。
最后,根据红白细胞半径的大小差异可对红白细胞进行定量分析。
增强结果:
加权阈值选取后增强和二值化效果图识别结果:
显微图片细胞的识别结果
五、测试结果
本文实验仿真采用VC++6.0编程实现。经对736张医学显微图像的测试表明:
红细胞的识别率>95%;
白细胞的识别率>92%;
整张显微图像的识别率>87%;
(以上识别率均以人工阅片数为基准。)