【摘 要】
:
随着近半个世纪以来石油化工行业的迅猛发展,塑料产量迅速增加,对塑料模具钢的性能也提出了更高的要求。在塑料生产过程中,会产生氟化氢、氯化氢、二氧化硫等腐蚀性气体,对模具型腔内部造成严重的腐蚀而致使模具失效。因此,要求模具钢具有:高硬度、较好的抛光性、强耐腐蚀性,还要具备一定的力学性能。因此,本文在目前广泛使用的模具钢S136上探究N、Mo及其协同作用对其组织和性能的影响规律和作用机制,可以为我国高品
论文部分内容阅读
随着近半个世纪以来石油化工行业的迅猛发展,塑料产量迅速增加,对塑料模具钢的性能也提出了更高的要求。在塑料生产过程中,会产生氟化氢、氯化氢、二氧化硫等腐蚀性气体,对模具型腔内部造成严重的腐蚀而致使模具失效。因此,要求模具钢具有:高硬度、较好的抛光性、强耐腐蚀性,还要具备一定的力学性能。因此,本文在目前广泛使用的模具钢S136上探究N、Mo及其协同作用对其组织和性能的影响规律和作用机制,可以为我国高品质模具钢的开发提供理论指导和技术支持,对我国高端镜面耐蚀塑料模具钢的发展具有重要意义。本实验通过东北大学特殊钢冶金研究所开发的加压感应熔炼炉制备六种不同N、Mo 含量模具钢 S136(0Mo-ON、0Mo-0.17N、0Mo-0.33N、1Mo-ON、1Mo-0.17N、1Mo-0.31N)。采用了金相显微镜、扫描电镜、X射线衍射对试样的组织、析出相及元素分布进行了分析;利用电化学方法(电化学阻抗谱及循环极化曲线)对实验钢的耐腐蚀性能进行了检测,并采用X射线光电子能谱分析了试样钝化膜成分;利用洛氏硬度仪、冲击试验机、拉伸试验机对试样的力学性能进行了分析;利用激光共聚焦显微镜和水接触角测试仪分析了实验钢的抛光性能和润湿性。得出的主要结论如下:随着N含量的升高,试样中析出相含量显著增加,其析出类型主要为M23C6和M2N,加入1%Mo显著减少了析出相,增加了氮在基体中的溶解度,与第一性原理计算结果相吻合。在无Mo时,随着N含量提高,耐腐蚀性能先升高后降低,加入1%Mo后,随着N含量提高,耐腐蚀性能逐渐升高,实验钢1Mo-0.31N的耐腐蚀性能最好,表明N、Mo之间存在协同作用提高了实验钢的耐蚀性能。钝化膜的XPS分析结果表明,N和Mo单独加入都促进了 Cr2O3在钝化膜中的富集,提高了它们的稳定性和保护能力,且N、Mo间协同作用能进一步提高Cr2O3在钝化膜中的富集。力学实验结果表明,随着N含量的升高,S136的硬度逐渐提高,加Mo后略有降低。冲击试验发现N、Mo的加入都会降低实验钢的冲击韧性,随着N含量提高,1%Mo含量的实验钢冲击功下降速率明显低于无Mo的实验钢,最终导致1Mo-0.31N的冲击功高于0Mo-0.33N。拉伸结果表明N、Mo对实验钢的塑性和拉伸强度都有明显的提升。通过对抛光性能和润湿性的检测发现N、Mo对其表面粗糙度的影响较小,随着N含量的升高,材料的疏水性能显著升高,增加了模具钢S136的脱模性能,而加Mo则会略微降低疏水性能。
其他文献
与锂相比,钠资源更丰富,价格也更低廉,因此钠离子电池及其电极材料也成为近些年来研究的焦点。目前,研究比较广泛的一个正极材料是层状金属氧化物NaxMnO2。由于钠离子半径比锂离子半径大,因此在充电和放电期间钠的迁移速度变慢,并且钠离子电池的循环性能和倍率性能受到影响。改善材料性能的一个有效方法是进行金属离子掺杂,P2-Na0.67Ni0.33Mn0.67O2材料具有较高的比容量,其衍生物也受到人们的
对铝硅酸盐熔体体系而言,其热力学性质和动力学性质均是由其微观结构决定的。因此,研究铝硅酸盐熔体的微观结构有助于阐明诸多冶金工业过程的反应和现象。铝硅酸盐熔体的微观网络结构可以基于体系中各个结构单元的种类及其聚合程度来表征,与熔渣的宏观性质密切相关。本文采用分子动力学模拟方法对铝灰还原熔融镍渣提铁过程中CaO-SiO2-‘FeO’-Al2O3-MgO熔渣体系的微观结构进行了定量研究,同时,采用红外光
轮毂电机驱动电动汽车可以将轮毂电机嵌入到每个车轮内,因此具有转矩独立可控、操控灵活、节能高效、车内空间大等优点。本文根据该型车辆驱动的特点,针对其状态估计和行驶稳定性控制两方面进行了较为系统的研究。本文研究的内容主要包含以下几点:(1)搭建车辆的仿真模型。使用Carsim和Matlab/Simulink联合仿真进行算法的验证。由于Carsim中缺少纯电动汽车的模型,需要对原有的燃油车模型进行一些改
EA4T合金钢是常用的铁路车轴材料,在国内外的大功率机车、高速列车以及地铁上被广泛使用,车轴在使用过程中主要承受循环载荷,循环载荷导致的疲劳失效是车轴最常见的失效形式。锻压工艺是车轴在生产过程中关键环节之一,锻压工艺参数影响车轴最后的机械性能。因此本文以EA4T材料为研究对象,使用试验、理论分析研究了不同的锻压工艺参数对EA4T材料微观组织与疲劳特性的影响,论文的主要研究内容包括:(1)本文对EA
危险品救援车针对的是危险品道路运输事故中泄漏的危险品,既可运输液态危险品,也可对固态危险品进行收集。所以危险品救援车的收纳罐内部不便设置固定的防晃板,否则不利于收集和倾倒固态危险品。本文借助于收纳罐内部现有的可移动的卸料板,在运输液态危险品时将其置于罐体中部来充当防晃板。当危险品救援车进行转向和制动时,液态危险品对罐体的冲击会降低危险品救援车的行驶稳定性,极易引发交通事故,造成财产的损失和人员的伤
中心偏析及缩孔、疏松是连铸大方坯主要内部质量缺陷之一,严重制约了高品质连铸坯及低轧制压缩比条件下大规格轧材的高效、稳定制备。目前,凝固末端重压下技术是可显著改善上述内部质量缺陷的重要技术手段之一。该技术充分利用铸流凝固末端外冷内热的温差优势,通过对铸坯厚度方向施加较大的机械压下变形,可实现压下量向铸坯心部的高效传递,从而大幅改善铸坯中心偏析及缩孔、疏松缺陷,为低轧制压缩比条件下生产高品质的大规格轧
ERT(Electrical Resistance Tomography)技术具有成本低、非侵入性、可视化的特点,是两相流检测中最具前景的研究课题之一。目前对ERT系统的研究集中在二维空间,对三维空间的研究较少。但是,对于离散相的几何形状、相对位置和空间分布等三维信息的需求越来越迫切。为了实现对被测敏感场的三维可视化检测,需要对三维ERT技术进行研究。本文以ERT技术为研究背景,以有限元分析软件A
骨科疾病越来越被人们所关注,相比于传统骨科手术的笨拙和不安全,随着机器人技术的发展,CT扫描影像技术、计算机图像处理能力和导航系统等技术的日渐成熟,计算机辅助手术受到越来越多的关注和研究。在机器人骨科手术中,切削过程直接影响着手术的成功和术后恢复。在切削过程中,由于骨材料的各向异性和非均匀性,切削力时刻发生变化,而当刀具开始接触骨材料和离开骨材料时,切削力会突变并产生峰值极易造成刀具断裂,这些现象
近年来,随着激光熔覆技术(laser cladding)的不断发展,该技术已逐步被应用于汽车、能源、电子、航空航天及医疗等多个领域,用于制造和修复各种零部件。镍基高温合金因其良好的高温力学性能及其耐腐蚀抗氧化性能,在航空航天、航海、核工业及石油化工等领域内具有独特优势而得到广泛应用。激光熔覆镍基高温合金制备涂层或成型复杂零部件方面具有独特优势。然而,激光熔覆过程复杂,影响因素众多,制备成型质量及力
无人驾驶汽车作为车辆工程与智能控制的结合,可以极大的提高车辆的性能以及道路利用率,是汽车领域内一项革命性技术,受到国内外的关注,其在高速环境下的轨迹跟踪的稳定性与跟踪精度问题是目前无人驾驶车辆的关键技术之一。本文针对无人驾驶车辆在高速环境下的轨迹跟踪问题开展研究,提出了一种双输入自适应模型预测轨迹跟踪控制算法,该算法能够在跟踪过程中同时对纵向速度和前轮转角进行实时优化,以实现车辆自主轨迹跟踪控制。