求解几类随机微分方程的若干数值方法

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:alecsuss
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随机微分方程能够刻画带不确定性或受随机因素干扰的数学物理过程,因此随机微分方程模型在社会生产和科学研究中广泛存在。绝大多数随机微分方程都不能精确求解,通过有效数值方法进行数值模拟就变得十分重要。在设计数值方法时,常要求数值方法能够保持原系统的特有结构,随机Hamilton系统的保辛数值方法在随机微分方程保结构算法中占有重要的地位。由于方法需要隐式求解、可能含有系数函数的高阶偏导数以及需要求解繁琐的辛条件和阶条件等原因,绝大多数的随机辛方法计算效率比较低且高阶方法比较少。此外,现实生活中大量随机微分方程都不满足Lipschitz条件和线性增长条件,而局部Lipschitz条件和超线性增长条件下随机微分方程高阶数值方法的收敛性研究还很少。本文针对几类随机Hamilton系统以及局部Lipschitz条件和超线性增长系数的随机微分方程的数值方法进行了若干研究。主要工作如下:针对Stratonovich型自治随机Hamilton系统,从带噪声的生成函数理论出发,构造了一类最多包含系数函数一阶偏导数的随机辛方法,推广了随机辛Runge-Kutta方法。应用有色根树理论分析了该方法的均方收敛阶条件并根据有色根树系数关系简化了阶条件。最后,分别对非交换和可交换情形随机Hamilton系统构造了1.0阶数值方法。针对Stratonovich型加性噪声随机Hamilton系统,构造了一类简化的随机分块Runge-Kutta方法,通过有色根树理论分析了均方收敛阶条件和辛条件并构造了均方1.5阶随机辛分块Runge-Kutta方法。此外,针对可分随机Hamilton系统和二阶随机Hamilton系统的情形进行了辛条件和阶条件的简化并构造了几类显式随机辛分块Runge-Kutta方法。针对Stratonovich型非自治随机Hamilton系统,利用有色根树理论分析了随机Runge-Kutta方法保辛的充分条件。在自治情形下,证明了这些条件与随机Runge-Kutta方法系数型辛条件的等价性。之后,将理论结果应用到随机伪辛Runge-Kutta方法的构造中,针对加性噪声随机Hamilton系统构造了几类显式高伪辛阶随机Runge-Kutta方法。针对带有局部Lipschitz和超线性增长系数的It(?)型随机微分方程,本文将投影策略与显式It(?)-Taylor方法相结合构造了投影显式It(?)-Taylor方法,给定了最优投影参数的选择策略,详细分析了方法的随机C-稳定性和随机B-相容性,进一步证明了数值方法在局部Lipschitz条件和超线性增长条件下的均方收敛性。本文各部分都设计了数值算例,数值结果充分验证了所构造数值方法的有效性和理论结果的正确性。
其他文献
随着空间在轨服务技术的发展,捕获非合作目标后的位姿控制已成为一个重要的研究领域。在捕获非合作目标后,服务航天器的结构布局和参数发生剧烈突变,使形成的组合体航天器动力学具有强耦合非线性和强不确定性,同时,控制系统的执行结构在组合体航天器中处于配置未知状态,这些都给捕获后组合体航天器的控制带来了极大的挑战。此外,由于非合作目标的质量特性未知,服务航天器在轨捕获后引起自身质量特性突变,使组合体航天器的质
高档数控机床是装备制造业的重要工具,是实现先进制造和现代化制造的基石,是实现高精尖技术及国防现代化的关键环节。全闭环伺服驱动系统作为高档数控机床最为重要的控制和执行机构,其位置控制误差直接影响了数控机床的加工精度。深入研究全闭环伺服驱动系统位置控制误差补偿技术,对推进高档数控机床国产化,提高高端制造装备自主性有着重要的意义。本论文在这一背景下,以全闭环伺服驱动系统为研究对象,从以下四个方面的关键技
近年来,我国体育竞技表演产业发展迅速,万人座席规模以上的大型体育馆建设数量逐年增多。在商业化运营模式引入背景下,大型体育馆运营职能及目标逐渐转变。空间整体作为运营核心资源对商业利用价值进行深度挖掘,一方面融合多样娱乐演艺活动以提高空间利用频率,另一方面通过提升服务性、体验性及应变性等增强空间吸引力,以实现空间运营收益目标。空间在与商业化运营模式适应过程中,功能配置、结构组织等不断演进,大型体育演艺
碳烟颗粒的生成、演化特性在低碳经济、环境污染、气候变化、人体健康、无线通信、红外遥感、目标识别等领域具有显著的学术价值和广泛的应用背景。碳烟颗粒的形貌特征参数是研究燃烧过程中碳烟生成的重要参考因素。发展碳烟诊断技术,准确测出碳烟颗粒形貌特征参数信息对于燃烧过程中碳烟的生成机理和抑制理论的研究非常重要。光学诊断方法因为其非侵入式测量的特性,能够在不干扰火焰燃烧的情况下得到碳烟的粒径、体积分数、组分等
红外透明陶瓷多晶镁铝尖晶石(MgAl2O4)以其优异的光学性能、机械强度以及高温稳定性使其成为应用于极端环境下的光学关键部件的理想材料,但是其稳定的化学结构及晶体结构也带来了极大的加工难度:高脆性使其在加工过程中极易造成表面脆性损伤,不易实现低损伤的塑性域加工表面,而其高硬度和弹性模量又会带来较大的刀具磨损,这些因素都使其成为高硬脆性难加工材料的代表。虽然镁铝尖晶石的合成制备技术经过几十年的发展已
随着电子产品的蓬勃发展,现有商业电池和超级电容器的体积能量密度和充放电速度已经很难满足应用需求,开发具有高体积比容量和高倍率性能的负极是锂/钠离子电池研究重点之一。TiO2具有循环稳定性高、安全、环境友好和价格低廉等优点,有望用于商品化锂/钠离子电池。但是,TiO2固有的电子电导率和离子扩散系数都比较低,限制了其电化学性能的发挥。纳米化及碳复合等手段能有效提升TiO2负极的电化学性能,但目前文献报
强化控制系统自组织、自诊断、自容错与智能化运行能力是未来航天器的重要发展趋势,星载物理信息系统的功能模块化、通信无线化也将成为系统集成的重要手段。模块化系统需要解决的主要问题是子系统间的通信问题,当采用网络将航天器控制系统各个环节进行连接时,系统的稳定性和性能对网络信道的带宽、传输频率等有较高的要求。需要指出的是,网络的带宽和通信频率常常是有限的,当带宽无法满足信号的传输负载或信号交互过于频繁时,
复合材料具有轻质、高强、可设计性强等优点,在现代工业和生活中得到广泛应用。然而,复合材料中基体与增强纤维的性能差异,以及基体与增强相间存在界面,使复合材料具有各向异性和优异的结构及功能特性,但也易受到微小损伤影响其性能。因此,复合材料在服役过程中经常会在负载应力、应变环境作用下出现基体破坏、纤维脱粘或断裂、层间开裂等内部损伤,这些内部损伤会不断扩展并最终导致复合材料发生灾难性破坏。因此,发展复合材
随着可调谐激光技术应用的发展,对多波长激光薄膜提出了较高要求:一是要求高反射薄膜的带宽更宽,当前因受反射镜带宽所限只能通过更换腔镜的方式来实现宽带激光的输出;二是要求激光薄膜的损伤阈值更高,目前非线性激光晶体薄膜的损伤阈值已成为制约中波红外激光器功率提升的瓶颈。针对高反射激光薄膜的带宽问题及多谱段非线性晶体减反膜的损伤阈值问题,开展理论和实验研究具有重要的科学意义和使用价值,将对可调谐激光技术的发
高频雷达通常被用于发现超视距的海面或空中目标,传统高频雷达包括高频地波雷达和高频天波雷达等,其中,高频地波雷达采用单一的地波传播模式,受地波衰减限制,其最大探测范围约为370km,无法探测距离更远的目标;高频天波雷达采用单一的天波传播模式,受电离层和自由空间衰减的影响,其探测范围大约为800~3500km,存在近距离探测盲区。可见,这两者都无法满足同时监测由近岸到中远海区域目标的需求,为了在岸基高