切换导航
文档转换
企业服务
Action
Another action
Something else here
Separated link
One more separated link
vip购买
不 限
期刊论文
硕博论文
会议论文
报 纸
英文论文
全文
主题
作者
摘要
关键词
搜索
您的位置
首页
学位论文
Ladyzhenskaya模型的流线扩散有限元方法
Ladyzhenskaya模型的流线扩散有限元方法
来源 :河北师范大学 | 被引量 : 0次 | 上传用户:dahar005
【摘 要】
:
Ladyyzhenskya模型是用于描述粘性不可压缩流体运动的一个数学模型,它是描述这类流体运动的Navier-Stoks方程在速度大梯度情形下的一个修正形式.该文对其提出并分析了一类流
【作 者】
:
刘宏忠
【机 构】
:
河北师范大学
【出 处】
:
河北师范大学
【发表日期】
:
2004年期
【关键词】
:
Ladyzhenskaya模型
流线扩散法
下载到本地 , 更方便阅读
下载此文
赞助VIP
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Ladyyzhenskya模型是用于描述粘性不可压缩流体运动的一个数学模型,它是描述这类流体运动的Navier-Stoks方程在速度大梯度情形下的一个修正形式.该文对其提出并分析了一类流线扩散有限元法,给出了用任意组合有限元空间逼近时,有限元解的存在性、唯一性、收敛性分析及误差估计.
其他文献
极小子流形和Calibration
该文利用calibration这一研究子流形的有力工具进一步了解子流形的结构并讨论它们与极小子流形之间的关系.我们证明了对于欧氏空间R中每一超曲面M,可以构造n-微分式ξ,而超曲
学位
极小超曲面
calibration
调和函数
Frobenius定理
Sobolev—Hardy不等式和拟线性椭圆型方程
偏微分方程问题主要来源于几何,物理学等问题中的数学模型,因此一直受到人们的关注.拟线性椭圆型方程是偏微分方程理论的一个重要分支,对于这种方程的解的存在性与非存在性,
学位
集中紧原理
临界指数
临界位势
Sobolev-Hardy不等式
拟线性椭圆型方程
临界点理论
亏格
Ekeland变分原理
非线性问题分歧分析与计算
随着科学技术的迅速发展,非线性问题大量出现在自然科学、工程技术乃至社会科学的许多领域中,成为当前科学研究的焦点.分歧是一种常见的非线性现象,并与其它非线性现象(如混
学位
非线性反应扩散方程
Liapunov-Schmidt方法
分歧方程
强等价
差分方法
拟谱方法
高阶奇异点
扩张系统
同伦参数
拟弧长延拓
具有等值面边界条件波动方程的边界精确控制与解的极限性态
该文研究R2(或R3)中在小"洞"边界上具有等值面边界条件波动方程的边界精确控制与解的极限性态.对边界控制,利用HUM方法,我们得到了精确能控性.该文还考虑当"洞"以一定方式收
学位
波动方程
等值面边界值问题
精确控制
极限性态
曲线拟合问题的正则化新算法设计、理论分析及应用
本文给出了用正则化方法拟合曲线的三种新方法,它们有原来算法的优点,但又都克服了原来算法在端点拟合效果差这个缺点,理论分析说明了新方法的有效性和合理性。数值实验进一步表
学位
正则化方法
曲线拟合
误差估计
有限元素法
高阶精度的数值格式研究
该文主要研究流体力学中一些重要方程的高精度数值格式的设计,以及基于这些方法的数值模拟.重点介绍了双曲守恒律方程(组)的WENO(WeightedEssentiallyNon-Oscillatory)格式的
学位
高阶格式
计算流体力学
WENO格式
中心格式
Padé逼近
Korteweg-de Vries方程
RLW方程
溃坝
周期延时神经网络的稳定性条件与性能分析
稳定性分析一直是神经网络理论研究的重点.很多研究人员在这一问题付出了自己的努力,得到了大量的结果.该文在这基础上首先证明了一个更普遍的、对模型有更少限定条件的结果.
学位
神经网络
周期
收敛性
全局指数稳定
比较
多媒体在小学英语教学中的合理应用
新课程背景下,多媒体走进了课堂,应用也越来越广泛。同样,多媒体的应用给小学英语教学注入了新的生机和活力,它丰富了教学形式,并优化了教学过程,从而使得学生得到更大程度的
期刊
多媒体
小学英语教学
学生
新课程背景
生机和活力
情境的创设
直观教学
应用
学习兴趣
情境激发
教学形式
教学手段
教学过程
说训练
知识
运用
优化
形象
Web数学电子信息系统探讨
Internet最初是为了共享资源而提出的.如今,不同信息的处理更广泛地渗透在不同的应用领域,人们通过网络发布资源,存取信息,交流知识,进行远程教学甚至在线考试.由于数学信息
学位
数学信息
在线编辑
编译器
网络容错性和通信延迟度量参数的研究及应用
一个图G的直径是G的所有点对间距离的最大值。当一个网络被模型化为一个图时(处理器看作结点,处理器之间的连线看作结点间的边),直径是最大传输延迟的度量。而涉及图G中两点
学位
互连网络
w-直径
λ-直径
瓶颈
与本文相关的学术论文