论文部分内容阅读
近年来,汽车的高级驾驶员辅助系统(ADAS)在车辆中得到了快速的发展和广泛的应用,也成为了全球研究的热点,特别是自动紧急制动(AEB)系统不仅具有碰撞预警的功能还具有自动实现紧急制动的功能,由于AEB系统工作在碰撞前的紧急危险的情况下,因此AEB系统对驾驶员的正常驾驶判断和乘坐舒适度及避撞的安全性等都有着极大的影响,但是目前的AEB系统的性能表现在多个方面还存在着缺陷且不具备转向避撞的功能。因此,本文提出一种具有紧急制动和紧急转向变道功能的主动紧急避撞系统以期提高汽车的主动安全技术和解决道路交通事故导致的人员伤亡的问题。本文围绕着以改进和优化智能汽车的主动紧急避撞系统在避撞过程中的综合性能(如目标检测的准确性和可靠性、介入时机的及时性、乘坐的舒适性、避撞时的车辆稳定性和安全性等)的关键技术和对乘员进行有效地约束保护的技术展开了研究,本文的主要研究工作内容和创新点如下:1.在AEB系统的基础上增设了自动紧急转向变道(AE LC)系统,设计了主动紧急避撞系统的驾驶模式的决策机制,实现了纵向和横向上的协同紧急避撞的功能,提高了主动紧急避撞系统的环境适应能力。2.研究了将毫米波雷达与视觉相机的数据信息进行融合的技术。在利用毫米波雷达探测目标物体时,通过设定反射截面积、信噪比、横向距离、相对速度及目标检测的生命周期的阈值来筛选出有效的目标信息。在利用视觉相机检测目标时,通过利用Adaboost机器学习算法与Haar-like矩形特征相结合的方法训练得到了车辆的分类器用于目标物体的检测,并且对待检图像的有效区域和检测窗口的尺寸进行了优化以提高检测效率;通过对检测的目标进行跟踪预测增强了目标检测的环境适应能力和降低了检测的误检率和漏检率。最后,通过实车实验验证了利用多传感器数据融合的感知系统对车辆目标进行检测时具有较高的准确性和可靠性。3.研究了AEB系统的分级预警和分级制动的控制策略,分析和设计了控制策略中的关键性能参数。在分级预警中设计了视觉、听觉和体感式的三级不同方式的预警功能,延长了预警时间且提高了预警的有效性;设计了路面自动识别系统,在考虑路面附着系数的情况决策分级制动策略;采用了TTC值的时间尺度算法结合反应制动器特性的距离尺度的算法计算AEB系统的介入时机。从AEB系统的介入时机和介入程度方面减少了AEB系统工作时对乘员的干扰影响,提高了乘员的乘坐舒适性。基于上述的控制策略和性能参数设计了AEB系统的分层控制器,用于规划介入时机和制动减速度以及控制自车的实际减速度精确地跟随期望的减速度。通过在多种工况下的仿真实验验证了设计的分层控制器的可行性和有效性,并且验证了路面自动识别系统的集成可以提高AEB系统的制动安全性和稳定性。4.研究了基于五次多项式的变道路径规划,分析了不同车速和不同变道持续时间下的变道性能;在综合考虑变道安全性、乘坐舒适性、道路行车条件等约束条件下应用了多目标优化的方法对变道路径进行了优化,将其作为变道跟踪的参考路径;接着通过采用模型预测控制(MPC)的方法对车辆的前轮转向角进行优化控制使车辆执行转向变道的避撞运动;最后基于Simulink模块建立的控制算法和基于Carsim建立的车辆模型和道路模型开展了模型在环的仿真实验,实验结果演示了智能汽车能够自动地完成转向变道的避撞驾驶,验证了路径规划和跟踪控制的有效性和可靠性。AELC系统的研究和应用将扩增了智能汽车在多种工况下的避撞功能。5.为了减少乘员在紧急避撞过程中受到车内的碰撞损伤,本文将主动预紧式安全带与紧急避撞系统相集成来对乘员进行预警提醒和约束保护。利用M ad ym o软件建立了紧急避撞的仿真模型,通过对比研究三种不同形式的安全带对乘员的保护效果,说明了主动预紧式安全带在紧急制动避撞过程中能够对乘员提供更好的约束保护性能。此外,通过开展台架实验和志愿者实车实验研究了可逆预紧式安全带在工作时的预紧速度和预紧力等性能参数。6.基于对主动紧急避撞系统的理论研究和仿真实验的研究,并且根据2 0 1 8年版的中国新车测评规程(C-NCAP)的相关测试要求,开发了测试主动避撞系统性能的测试设备,并且利用该开发的测试设备开展了部分的场地实验,对AEB系统的性能进行了测试。测试设备的开发将进一步地促进主动紧急避撞技术的发展。综上所述,本文提出了从纵向和横向上协同进行避撞的主动紧急避撞系统,然后对优化和提高其多方面的综合性能的关键技术进行了深入的分析和研究。