CAGD中曲面曲率线的计算方法研究

来源 :浙江大学 | 被引量 : 0次 | 上传用户:zywlaoying
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文的主题是对CAGD系统中所需的曲面曲率线的计算方法进行研究。 第一章综述了NURBS曲面的发展历程,由此引申出测地线和曲率线计算的必要性。 第二章综述了有关测地线和曲率线的计算方法的研究现状,内容包括:NURBS曲面上测地线的求积,网格面上离散最短路径的算法,网格顶点处主方向的估计,脐点的确定,特征处理,以及曲率线的跟踪算法和间距优化。 第三章是本文的核心部分,作者对NURBS曲面的曲率线的积分进行了系统的公式推导,并利用NURBS曲面的离散法向量有效地简化了曲面第二基本量的计算,使得用Euler法迭代求解曲率线微分方程的过程得以加速;在求得曲率线上的离散点集以后,又应用奇异混合插值技术,在可控精度内把曲率线用显式直接表为位于NURBS曲面上的B样条曲线。 第四章是最后一章,介绍了作者在网格面上离散主曲率算法的初步研究结果及设想。
其他文献
本文主要考虑了如下问题: 1.用Hirota方法分别对非等谱mKdV方程,非等谱非线性Schrodinger方程以及非等谱sine-Gordon方程进行求解,并通过几何图象对解的性质进行初步分析。
非光滑函数的一阶二阶广义导数是非光滑分析的重要组成部分,是研究非光滑最优化问题的基础.由于缺少光滑特征,经典的基于微分概念的非线性规划理论和算法不再适用于非光滑最优
延迟微分方程比常微分方程更为准确地描述了现实生活中的现象,并且在生态学、经济学、管理学、化学、医学等许多领域具有广泛的应用,其重要性可想而知,因而有必要对其进行理
本文论述了在纠错码理论中,polyadic码是一类重要的码.最初,域GF(q)上polyadic循环码首次是由Brualdi和Pless(1989)作为duadic、triadic循环码的推广而提出的,并给出了GF(q)上po
本文主要研究了几个重要的幂等元半环簇,从多个角度给出了其中成员的刻划,也对他们进行了次直积分解。首先,对半环理论研究的背景、现状和幂等元半环的基础知识作了简要的介绍。
线性离散型时滞微分方程在电学、光学、工程控制等方面都有着广泛的应用,其重要性不言而喻。然而此类方程的真解并不容易得到。此时用数值方法求其数值解,虽然不是方程的真解,但
在初期试验阶段,试验者常常会有许多候选因子,而这些因子中往往只有少数几个对试验结果有显著的影响.超饱和设计是一种试验次数少于候选因子个数的试验设计方法,在试验初期应用
Korteweg-deVries(KdV)方程是人们在研究一些物理问题时得到的非线性波动方程,其解满足无穷多个守恒律。本文为该方程设计了一种守恒型差分格式,其采用的是有限体积法,它是Godun
随着激光测距扫描等三维数据获取硬件技术的日趋完善,人们可以得到精度和密度都越来越高的物体表面三维数据,利用物体表面三维数据来建立真实的物体数字模型,也就是反向工程