【摘 要】
:
在自动驾驶中,精确地感知周围环境至关重要。随着科技的发展,传统的三维目标检测算法由于速度缓慢,准确率不够高,正在渐渐地被基于深度学习的算法所取代。目前,由于计算力发展迅速,以及激光雷达能够精确给出目标三维外观以及位置的优点,大部分的三维目标检测算法都选择了激光雷达作为数据来源。点云数据具有数量庞大的特性,且有着与图像数据完全不同的格式,如何用深度学习有效地处理点云数据是研究的重点和难点。作为自动驾
论文部分内容阅读
在自动驾驶中,精确地感知周围环境至关重要。随着科技的发展,传统的三维目标检测算法由于速度缓慢,准确率不够高,正在渐渐地被基于深度学习的算法所取代。目前,由于计算力发展迅速,以及激光雷达能够精确给出目标三维外观以及位置的优点,大部分的三维目标检测算法都选择了激光雷达作为数据来源。点云数据具有数量庞大的特性,且有着与图像数据完全不同的格式,如何用深度学习有效地处理点云数据是研究的重点和难点。作为自动驾驶的“眼睛”,对三维目标检测算法的研究具有重大意义。本文所有实验均基于KITTI数据集实现,该数据集包含点云数据,由Velodyne-HDL-64E激光雷达采集,以及对应的图像数据,由两个摄像头采集。本文的研究意在寻找一种具有实时性且能够用于自动驾驶的的高检测准确率车辆检测算法。本文主要研究了三种三维目标检测算法,提出了:将深度学习嵌入传统三维目标检测框架中的方案;融合图像信息的三维目标检测算法;以及在基于网格生成的三维目标检测算法中第一次提出了无锚框的算法。本文的主要工作如下:1.研究了传统三维目标检测框架:在地面点滤除任务中,提出了结合前视图和卷积神经网络的地面点滤除算法;在点云聚类任务中,研究了激光雷达数据的特性,使用分层次欧几里德聚类算法进行聚类;在目标识别过程,提出了基于包围框的特征,然后使用基于深度学习的目标识别算法进行识别。实验证明,上述算法能够提升传统算法的效果和速度。2.研究了基于点的三维目标检测算法,并提出一种融合图像数据的方式:使用已经得到的预测框内点云训练一个新的点云分类器,并将该预测框投影回图像训练一个图像分类器,结合以上两个分类器提升算法的分类置信度,以提升检测准确率。实验证明,上述算法能够有效提升原本算法的检测精度,但是在速度上有所下降。3.研究了基于网格生成的三维目标检测算法,提出了一种快速的网格生成算法。另外,这类算法中广泛应用锚框这一设定,但是锚框引入了更多的超参数。本文提出了一种去除锚框的算法,证明了锚框并非必要。实验证明,上述算法能够有效提升网格生成的速度,提升算法精度。
其他文献
为了应对近年来深度卷积神经网络(CNNs)对于计算和存储需求的快速增长,研究人员提出了多种方法来实现模型压缩与加速,其中包括低秩分解,网络剪枝,权重量化,神经网络结构搜索和知识蒸馏等。在上述方法中,基于网络剪枝的算法通常能够在易用性和压缩加速性能之间取得良好的折中,因此格外受研究人员青睐。尽管现有的网络剪枝算法在一些特定的深度学习任务上展现出了不俗的压缩加速性能,这些算法在更广泛的实际应用场景中或
目标物体的位姿识别和各种场景下的运动规划问题是非结构化环境下机器人作业的关键技术。一方面,现有位姿识别算法中,基于模板搜索匹配或者基于迭代的算法速度较慢,基于神经网络的算法往往模型体积较大,意味着更大的存储需求和计算量。而嵌入式的机器人系统往往存储和计算能力受限,但有实时性及精度需求。另一方面,机器人系统中往往存在多场景的运动规划问题,包括高维问题。因此,使用的运动规划算法需要便于泛化、适用于高维
工件装配是智能制造领域中不可缺少的组成部分,如今小批量与多样化的生产模式对装配工作的快速性、准确性以及灵活性均提出了更高的要求。与传统方式相比,基于协作机器人的智能化装配在保证产品质量的同时,能够最大限度地提高生产过程的柔性与效率。国内外对于智能装配技术的研究主要集中在工件的识别与定位问题上。本文以包含平面特征的无纹理工业零件为研究对象,以复杂背景下工件识别与高性能位姿估计为研究切入点,提出将堆叠
随着计算机算力的提升、存储技术的发展以及互联网的普及,机器学习模型越来越多地受到人们的关注。大量的研究成果已经在现实生活中为我们带来了便捷。作为一项数据驱动的技术,机器学习模型可以有效地挖掘海量数据背后潜在的关系。数据质量的好坏对模型最终的性能起到了根本的、决定性的作用。但是用来训练模型的数据有的直接从外部环境中搜集整理而来,比如直接来自互联网上的用户。这样就给攻击者提供了攻击机器学习模型训练数据
推进高校组织育人工作,是把牢高校意识形态主导权、培养德智体美劳全面发展的时代新人、强化高校基层组织的凝聚力和战斗力的必然要求。当前,高校基层组织在培育时代新人方面存在一些困境。如,政治功能发挥不充分,导致组织育人的政治引领力不强;工作理念不能因势而进,导致组织育人的有效性不足;各类组织不能形成育人合力,导致组织育人的联动性不够,等等。鉴于此,文章提出优化组织育人,要旗帜鲜明,积极发挥高校组织在时代
当工业机器人视觉系统用于工件表面三维测量任务时,为了获得较好的测量精度,不仅需要对机器人视觉系统进行标定,还需要对相机进行拍摄位置规划与定位控制,以获得足够多的工件表面关键特征信息。现有的工业机器人视觉测量方案中,相机的拍摄位置需要根据人为经验进行规划,而相机定位通过机器人控制器的开环控制实现。然而,该方案无法保证工件表面的关键特征位于相机视野内,会导致关键特征信息缺失,影响三维重建精度。针对以上
随着科技的发展和社会需求的改变,各类产品向个性化、质量优转化;工业生产模式向柔性化、智能化制造转变,在这样的时代背景下,部署简单、灵活易用的协作机器人逐渐成为机器人研发领域的热点。碰撞检测与拖动示教功能体现了协作机器人安全性与协作性的本质特点,成为实现人机自然交互的基本功能。无外部传感器人机交互所带来的低成本高效益,吸引着众多学者投身于无外部传感器的人机交互算法的研究中。为推动无外部传感器碰撞检测
在运载火箭重载化、大型化、经济化的发展态势下,火箭贮箱箱底等大型航天薄壁回转体制件的整体旋压加工技术成为了我国航天制造当前亟待攻克的难题。为抑制立式强力旋压过程中板坯边缘褶皱等失效问题的发生,本论文中为并联旋压机设计了一种压边高度及直径可调的随动压边装置。为了达到预期的压边工作效果,该随动压边装置的电液比例协同控制系统对持续未知扰动影响下的单液压缸位置控制精度、双缸同步控制精度、上下压边圈协同偏差
在C型臂X光影像引导下的椎间盘射频消融术是一种经皮穿刺治疗椎间盘突出的微创手术,具有创伤小恢复快的优点,其中穿刺针的精准定位是手术关键。传统的椎间盘射频消融术手术时间长、操作流程繁琐,医生受X射线辐射危害,没有保护机制,容易穿刺失败。为解决以上问题,本文设计了一套脊柱穿刺手术机器人系统,并针对机器人系统的交互引导控制展开研究,协助医生安全、高效的完成手术。针对脊柱穿刺手术机器人特点,本文首先通过分
视觉问答是一项属于计算机视觉和自然语言处理交叉领域的任务,它要求模型读取输入图像和相关的自然语言问题,并给出合理的答案。与图灵测试相关的问答系统始终是人工智能研究的重点之一,而视觉问答模型不仅要实现机器的思考和推理能力,还要完成图像信息和文字信息的统一语义表达。该任务对于探寻机器智能的实现和构建跨媒体信息统一模式都具有重大意义。本研究首次通过跨模态检索方法来提高视觉问答任务的效果。现有方法没有关注