论文部分内容阅读
By integrating forest inventory data with remotely sensed data, new data layers for factors that affect forest fire potentials were generated for Baihe Forestry Bureau in Jilin Province of China. The principle component analysis was used to sort out the relationships between forest fire potentials and environmental factors. The classifications of these factors were performed with GIS, generating three maps: a fuel-based fire risk map, a topography-based fire risk map, and an anthropogenic-factor fire risk map. These three maps were then synthesized to generate the final fire risk map. The linear regression method was used to analyze the relationship between an area-weighted value of forest fire risks and the frequency of historical forest fires at each forest farm. The results showed that the most important factor contributing to forest fire ignition was topography, followed by anthropogenic factors.
By integrating forest inventory data with remotely sensed data, new data layers for factors that affect forest fire potentials were generated for Baihe Forestry Bureau in Jilin Province of China. The principle component analysis was used to sort out the relationships between forest fire potentials and environmental factors . The classifications of these factors were performed with GIS, generating three maps: a fuel-based fire risk map, a topography-based fire risk map, and an anthropogenic-factor fire risk map. These three maps were then synthesized to generate the final fire risk map. The linear regression method was used to analyze the relationship between an area-weighted value of forest fire risks and the frequency of historical forest fires at each forest farm. The results showed that the most important factor contributing to forest fire ignition was topography, followed by anthropogenic factors.