应用(1/G)-展开法求解五阶KdV方程

来源 :应用数学 | 被引量 : 0次 | 上传用户:doublexiu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本篇论文首次提出(1/G)-展开法,用于求解非线性演化方程的行波解.将该法应用于五阶KdV方程的求解,当参数满足一定条件时,该方程可化为Sawada-Kotera(SK)方程、Caudrey-Dodd-Gibbon(CDG)方程、Kaup-Kupershmidt(KK)方程、Lax方程和Ito方程.其解可被表示为含两个任意参数的双曲函数解和三角函数解,作为示例,文中仅给出了SK方程和Ito方程的行波解.(1/G)-展开法具有直接、简捷与基本的特点,可以适用于数学物理中其它非线性演化方程的求解.
其他文献
针对医院现有网络和互联网情况,利用RSA加密算法实现文宇信息的加密,使用小波分析技术达到图像压缩,采用成熟的网络技术完成远程信息传输的设计方案。
针对刚性振荡问题,讨论了两类带显式级的三级对角隐式Runge—Kutta方法的阶、级阶、A-稳定性、相误差和耗散误差,所构造的方法成功应用于一类大气化学反应问题的求解.
通过平面动力系统的方法讨论了对称正则长波方程的分岔问题.得到了该方程的分岔条件,在一些参数的具体值的情况下给出相图并通过微分方程的数值模拟方法模拟出了该方程的周期行
利用Riccati变换及积分平均技巧,建立一类具有非线性中立项及分布偏差变元的二阶中立型方程的振动准则,我们的结果推广并改进了一些已有的结果.