论文部分内容阅读
微表情是一种不能自主控制和伪装的面部表情,其与诚信度的关系密切,具有持续时间短且难以识别的特征.为提高计算机自动识别微表情的准确性,提出一种基于差分能量图和中心化Gabor二值模式(centralized Gabor binary patterns,CGBP)的微表情识别方法.该方法首先利用差分法计算微表情序列的能量得到差分能量图,获得人脸面部肌肉相位的变化;其次将Gabor与中心二值模式CBP相结合,得到CGBP算子对能量图进行微表情的特征提取;最后利用ELM分类器进行微表情分类识别.在CASME