SOME QUESTIONS REGARDING VERIFICATION OF CARLESON MEASURES

来源 :数学物理学报(英文版) | 被引量 : 0次 | 上传用户:youqianlowa
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
In this paper,we give a survey of some recent progress in terms of verifying Carleson measures;this includes the difference between two definitions of a Carleson measure,the Bergman tree condition,the T1 condition for Besov-Sobolev spaces on a complex ball,vector-valued Carleson measures,Carleson measures in strongly pseudoconvex domains and reverse Carleson measures.
其他文献
In this paper,we give a survey of our recent results on extension theorems on K(a)hler manifolds for holomorphic sections or cohomology classes of (pluri)canonical line bun-dles twisted with holomorphic line bundles equipped with singular metrics,and also
该文用泛函广义变分迭代方法,研究了一类非线性扰动动力系统.首先引入一个相应典型系统的孤立子波解.然后构造一组泛函广义变分式,求出Lagrange乘子,最后构造一组变分迭代关系式,由此便得到了原非线性扰动动力系统的渐近行波解.
This article traces several prominent trends in the development of M(o)bius in-variant function spaces QK with emphasis on theoretic aspects.
利用Wilson元研究了Extended Fisher-Kolmogorov(EFK)方程的间断有限元逼近格式.在不需要后处理技术的前提下,通过对非线性项采用新的分裂技术,分别得到了半离散和线性化欧拉全离散格式下原始变量u和中间变量v=一△u的O(h2)和O(h2+τ)阶的收敛性结果,正好比通常的关于Wilson元的误差估计高出一阶.这里,h,τ表示空间剖分参数和时间步长.
As in our previous work[14],a function is said to be of theta-type when its asymptotic behavior near any root of unity is similar to what happened for Jacobi theta functions.It is shown that only four Euler infinite products have this property.That this i
共轭梯度法是求解一类大规模优化问题的重要算法,有计算简单收敛速度快等优点.该文提出了一个修正的WYL型三项共轭梯度法.该方法满足充分下降条件不依赖于任何线搜索方式,并且在修改的Armijo线搜索下具有全局收敛性质.实验数值结果表明新方法是有效的.
该文提出了一种新的惯性收缩投影算法,在不依赖Lipschitz常数L的条件下,证明了伪单调变分不等式问题解的强收敛性定理.最后给出了数值实验结果.
该文考虑了一类非局部时滞的SVIR反应扩散模型.通过构造合适的Lyapunov泛函,当基本再生数R0>1时,证明了模型的正平衡点是全局吸引的,所得结果推广了一些已有的结果.
This paper concerns the reconstruction of a function f in the Hardy space of the unit disc D by using a sample value f(a) and certain n-intensity measurements ||,where a1,…,an ∈ D,and Ea1…an is the n-th term of the Gram-Schmidt orthogonalization of the Sz
This survey is dedicated to the memory of Professor Jiarong Yu,who recently passed away.It is concerned by a topic of which he was fond,an interest shared by myself:the analytic theory of Dirichlet series.