论文部分内容阅读
利用数论中的同余,勒让德符号的性质及其它一些方法,研究丢番图方程x3±1=Dy2(D=D1p,D是无平方因子的正整数,其中D1是不能被3或6k+1之形的素数整除的正整数,p=3(12r+7)(12r+8)+1,r是正整数)的解的情况。证明了当D1≡7(mod12)时,方程x3+1=Dy2无正整数解;当D1≡5,8(mod12)时,方程x3-1=Dy2无正整数解。