论文部分内容阅读
在空间数据分析中,由于空间预测在很大程度上依赖于对空间变化的现象分布的假设,因此建立空间数据分布模型是非常重要的问题。Stein(1999)指出,传统的方法利用变差函数描述插值的空间依赖性结构和基于似然方法的模型相比是相当不精确的。对于非正态分布的空间数据而言,Copula函数提供了一种可以分别指定相关结构和边缘分布而建立联合分布的可能性。文章基于Copula函数的非正态分布数据的空间插值方法,讨论模型参数的极大似然估计并运用生态环境数据进行实证研究。