论文部分内容阅读
针对回溯搜索优化算法存在的收敛速度慢,容易陷入局部最优等问题,提出了一种改进算法。首先利用t分布产生变异尺度系数,加快了算法收敛速度;接着完善交叉方程结构,引入最优个体控制种群搜索方向,有效提高了算法开发能力;最后提出进化选择机制,引入差分进化算法变异因子,一定概率下以较差解替换较优解,避免算法陷入局部最优。在数值实验中,选取了15个测试函数进行仿真测试,并与5种表现良好的算法进行了比较,结果表明,该算法在收敛速度及搜索精度方面有明显优势。