论文部分内容阅读
通过在Hellinger-Reissner广义势能中引入应变的非线性项,推导出了弹性力学Hamilton体系下的屈曲基本方程。运用精细积分法分别对三种层合板进行求解,并与Kirchhoff解、有限元解作了比较。结果是严格弹性力学意义(没有引入任何几何变形假设)下的精确解。为衡量各种计入剪切变形的薄板、中厚板理论的准确性提供了一个标准;同时对层合板的设计具有现实的指导意义。