论文部分内容阅读
研究分形集的中心任务是计算或估计分形集的Hausdorff维数与Hausdorff测度。本文研究Sierpinski垫片的Hausdorff测度的上界估计,利用部分估计的方法,归纳出了关于Sierpinski垫片的某种部分覆盖所包含的小三角形的个数以及这种覆盖的直径的规律,得到了Sierpinski垫片的Hausdorff测度的一个更好的上界估计值H^s(S)≤1377811/09286×(2431/3072)^s≈0.870031853。