论文部分内容阅读
【摘要】在小学数学课堂教学中,通过手脑并用,把抽象变形象、探索真知;手脑并用,可操作性极强,直观明了,又能调动学生的积极性,就能培养学生自主学习的能力,为提高终身学习能力打下坚实基础。
【关键词】手脑并用;学生自主学习;能力培养方法
全球知名大学麻省理工学院的校训,用到了Mind and Hand,就是强调手脑并用。而我国著名教育家陶行知先生曾经作过一首儿歌:人有两个宝,双手和大脑,双手會做工,大脑会思考。用手又用脑,才能有创造。可见,手脑并用可以提高人的创造力。在数学课堂上,老师带动学生手脑并用,创设自主学习的空间,渗透基本的数学思想,激发自主学习的兴趣,学生们掌握了自主学习的方法,就能培养自主学习的习惯,养成自主学习的精神。
一、手脑并用,把抽象变形象
以北师大版小学二年级下册《除法》为例,本章节内容是小学生第一次接触两位数除以一位数的除法。与乘法相比,除法对于小学生来说更加抽象。所以在教学“分苹果”一节课程时,我选择手脑并用的形象教学法,课前准备好更易于操作的糖果,从“分糖果”入手,采用小组合作的方式,先按笑笑的要求,把这18颗糖果平均分成6份,让孩子们自由发挥,说说自己在分的过程中遇到什么问题,最后是怎么解决的,得出什么规律……经过一番动手操作后,同学们积极性很高,有的一开始不知道每份能分几个,所以一个一个地分;有些小组一开始就四个四个地分,结果发现不够分,后来再从每一份里面取出一个;有些小组一开始就能三个三个地分,刚好分完。最后得出的结论是:份数(6)×每份的个数(3)是总糖果数(18),刚好是口诀“(三)六十八”。趁着同学们正在分享我们得出的劳动成果时,让大家再验证一下淘气说的“平均发给2个人”是不是可以用“二(九)十八”的口诀来分。
经过一番人人参与,齐齐动手的“分糖果”活动,同学们终于知道了除法也是用口诀来计算的。课堂上老师创设如此印象深刻的自主学习空间,激发了孩子们的学习兴趣,更能让孩子们尝试到成功的喜悦,大大提高了他们学习的积极性。而且,这种做法可以类推到下一章节的《有余数的除法》,甚至是多位数除法的计算当中(即使不再是分糖果,而是小方块),因为我们已经培养了孩子们自主学习的习惯,他们是自主学习能力自然也得到了提升。
二、手脑并用,探索真知
北师大版的数学教材,特别注重“探索与发现”的学习形式,也就是我们这里讲的手脑并用。探索型学习成为学习数学的重要方法,逐渐培养学生们的数学素养,培养他们自主学习的能力。
以四年级下册《探索与发现:三角形内角和》为例,本身这类教学就是要学生经过探索(动手操作)自己找出规律的,所以,老师不能用灌输的形式告诉孩子们“三角形内角和就是180 °”,而应该让孩子们动手操作,见证这个180°是如何得来的。常用的方法有:1.用量角器量出自己准备的三角形三个角的度数,再算出他们的和;2.把一个纸三角形的三个角完整地撕开,再把它们拼成一个平角;3.用一个长方形或者正方形沿着对角线折出两个三角形,推算出三角形的三个内角和;4.用一个三角形的三个角往同一个方向折出一个长方形,它们的刚好就在这个长方形的一条边上(形成了一个平角)。由此可以总结出,三角形的三个内角和就是180°,这是我们亲自验证过的,毋庸置疑。
关于图形的学习,尤其是图形的演变,是小学数学的一个难点。如果能使用直观教学,让学生亲手操作,手脑并用,见证图形的变化过程,将会降低学习的难度,收到事半功倍的学习效果。
如五年级习题“用四根木条钉成一个长方形,向相反方向拉动两个角,拉成一个平行四边形。问,它的周长和面积的变化情况。”如下图
此类题型,如果学生未经过亲自动手,很难得出正确的结论,因为学生容易把周长和面积的概念混淆,或者说是看着面积似乎没什么变化。所以,我教学时让学生亲自动手,把长方形“拉”成平行四边形,再分析原来的长和宽在现在的平行四边形里还能不能找到。事实证明:长方形的长是平行四边形的底,宽变成了侧边,不是平行四边形的高,根据“直角三角形的直角边小于斜边”的规律可知,高比原来的宽短了。由此可知,面积变小了,而周长是不变的。同时,有些学生在拉成平行四边形时比较贪玩,把高拉得更矮了,这样一看,面积明显是小于原来长方形的面积的。所谓“实践是检验真理的唯一标准”,这句话在数学领域同样适用。学生们的空间思维得到了切实的锻炼,在大脑里形成的知识架构会支持他们整个数学学习生涯。
《基础教育课程改革纲要》在谈及新一轮课程改革的具体目标时,首要的一条是:“改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程,同时成为学会学习和形成正确价值观的过程”这一目标使“改变学习方式,倡导自主学习”。
由此可见,手脑并用的数学课堂,可操作性极强,直观明了,又能调动学生的积极性,就能培养学生自主学习的能力,为提高终身学习能力打下坚实基础。
【参考文献】
[1]李志勇.小学数学智慧课堂教学模式及实施案例分析[N].广东教育,2021,2.
[2]麦志亮.运用学习迁移培养学生自主学习能力[N],广东教育,2021,2.
【关键词】手脑并用;学生自主学习;能力培养方法
全球知名大学麻省理工学院的校训,用到了Mind and Hand,就是强调手脑并用。而我国著名教育家陶行知先生曾经作过一首儿歌:人有两个宝,双手和大脑,双手會做工,大脑会思考。用手又用脑,才能有创造。可见,手脑并用可以提高人的创造力。在数学课堂上,老师带动学生手脑并用,创设自主学习的空间,渗透基本的数学思想,激发自主学习的兴趣,学生们掌握了自主学习的方法,就能培养自主学习的习惯,养成自主学习的精神。
一、手脑并用,把抽象变形象
以北师大版小学二年级下册《除法》为例,本章节内容是小学生第一次接触两位数除以一位数的除法。与乘法相比,除法对于小学生来说更加抽象。所以在教学“分苹果”一节课程时,我选择手脑并用的形象教学法,课前准备好更易于操作的糖果,从“分糖果”入手,采用小组合作的方式,先按笑笑的要求,把这18颗糖果平均分成6份,让孩子们自由发挥,说说自己在分的过程中遇到什么问题,最后是怎么解决的,得出什么规律……经过一番动手操作后,同学们积极性很高,有的一开始不知道每份能分几个,所以一个一个地分;有些小组一开始就四个四个地分,结果发现不够分,后来再从每一份里面取出一个;有些小组一开始就能三个三个地分,刚好分完。最后得出的结论是:份数(6)×每份的个数(3)是总糖果数(18),刚好是口诀“(三)六十八”。趁着同学们正在分享我们得出的劳动成果时,让大家再验证一下淘气说的“平均发给2个人”是不是可以用“二(九)十八”的口诀来分。
经过一番人人参与,齐齐动手的“分糖果”活动,同学们终于知道了除法也是用口诀来计算的。课堂上老师创设如此印象深刻的自主学习空间,激发了孩子们的学习兴趣,更能让孩子们尝试到成功的喜悦,大大提高了他们学习的积极性。而且,这种做法可以类推到下一章节的《有余数的除法》,甚至是多位数除法的计算当中(即使不再是分糖果,而是小方块),因为我们已经培养了孩子们自主学习的习惯,他们是自主学习能力自然也得到了提升。
二、手脑并用,探索真知
北师大版的数学教材,特别注重“探索与发现”的学习形式,也就是我们这里讲的手脑并用。探索型学习成为学习数学的重要方法,逐渐培养学生们的数学素养,培养他们自主学习的能力。
以四年级下册《探索与发现:三角形内角和》为例,本身这类教学就是要学生经过探索(动手操作)自己找出规律的,所以,老师不能用灌输的形式告诉孩子们“三角形内角和就是180 °”,而应该让孩子们动手操作,见证这个180°是如何得来的。常用的方法有:1.用量角器量出自己准备的三角形三个角的度数,再算出他们的和;2.把一个纸三角形的三个角完整地撕开,再把它们拼成一个平角;3.用一个长方形或者正方形沿着对角线折出两个三角形,推算出三角形的三个内角和;4.用一个三角形的三个角往同一个方向折出一个长方形,它们的刚好就在这个长方形的一条边上(形成了一个平角)。由此可以总结出,三角形的三个内角和就是180°,这是我们亲自验证过的,毋庸置疑。
关于图形的学习,尤其是图形的演变,是小学数学的一个难点。如果能使用直观教学,让学生亲手操作,手脑并用,见证图形的变化过程,将会降低学习的难度,收到事半功倍的学习效果。
如五年级习题“用四根木条钉成一个长方形,向相反方向拉动两个角,拉成一个平行四边形。问,它的周长和面积的变化情况。”如下图
此类题型,如果学生未经过亲自动手,很难得出正确的结论,因为学生容易把周长和面积的概念混淆,或者说是看着面积似乎没什么变化。所以,我教学时让学生亲自动手,把长方形“拉”成平行四边形,再分析原来的长和宽在现在的平行四边形里还能不能找到。事实证明:长方形的长是平行四边形的底,宽变成了侧边,不是平行四边形的高,根据“直角三角形的直角边小于斜边”的规律可知,高比原来的宽短了。由此可知,面积变小了,而周长是不变的。同时,有些学生在拉成平行四边形时比较贪玩,把高拉得更矮了,这样一看,面积明显是小于原来长方形的面积的。所谓“实践是检验真理的唯一标准”,这句话在数学领域同样适用。学生们的空间思维得到了切实的锻炼,在大脑里形成的知识架构会支持他们整个数学学习生涯。
《基础教育课程改革纲要》在谈及新一轮课程改革的具体目标时,首要的一条是:“改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程,同时成为学会学习和形成正确价值观的过程”这一目标使“改变学习方式,倡导自主学习”。
由此可见,手脑并用的数学课堂,可操作性极强,直观明了,又能调动学生的积极性,就能培养学生自主学习的能力,为提高终身学习能力打下坚实基础。
【参考文献】
[1]李志勇.小学数学智慧课堂教学模式及实施案例分析[N].广东教育,2021,2.
[2]麦志亮.运用学习迁移培养学生自主学习能力[N],广东教育,2021,2.